This function quantifies and visualizes the usage of V, D, or J genes, or gene pairings across T or B cell clones.
percentGeneUsage(
input.data,
chain = "TRB",
genes = "TRBV",
group.by = NULL,
order.by = NULL,
summary.fun = c("percent", "proportion", "count"),
plot.type = "heatmap",
exportTable = FALSE,
palette = "inferno",
...
)
vizGenes(
input.data,
x.axis = "TRBV",
y.axis = NULL,
group.by = NULL,
plot = "heatmap",
order.by = NULL,
summary.fun = c("percent", "proportion", "count"),
exportTable = FALSE,
palette = "inferno"
)
percentGenes(
input.data,
chain = "TRB",
gene = "Vgene",
group.by = NULL,
order.by = NULL,
exportTable = FALSE,
summary.fun = c("percent", "proportion", "count"),
palette = "inferno"
)
percentVJ(
input.data,
chain = "TRB",
group.by = NULL,
order.by = NULL,
summary.fun = c("percent", "proportion", "count"),
exportTable = FALSE,
palette = "inferno"
)
The product of combineTCR()
, combineBCR()
,
or combineExpression()
.
The TCR/BCR chain to use. Accepted values: TRA
, TRB
, TRG
,
TRD
, IGH
, IGL
(for both light chains)
A character vector specifying the gene loci to analyze. Can be a single gene e.g., "TRBV" or "IGHJ" or a pair for genes analysis (e.g., c("TRBV", "TRAV"), or "TRBV", "TRBJ").
A column header in the metadata or lists to group the analysis
by (e.g., "sample", "treatment"). If NULL
, data will be analyzed as
by list element or active identity in the case of single-cell objects.
A character vector defining the desired order of elements
of the group.by
variable. Alternatively, use alphanumeric
to sort groups
automatically.
Character string choosing the summary statistic -
"percent"
(default), "proportion"
, or "count"
.
The type of plot to return: "heatmap"
(default for paired loci,
also available for single loci), or "barplot"
(for single loci).
If TRUE
, returns a data frame or matrix of the results
instead of a plot.
Colors to use in visualization - input any hcl.pals.
Additional arguments passed to the ggplot theme
Gene segments to separate the x-axis, such as TRAV
,
TRBD
, IGKJ
.
Variable to separate the y-axis, can be both categorical
or other gene gene segments, such as TRAV
, TRBD
, IGKJ
.
The type of plot to return - heatmap or barplot.
Vgene
, Dgene
or Jgene
A ggplot object displaying a heatmap or bar plot of gene usage.
If exportTable = TRUE
, a matrix or data frame of the raw data is returned.
# Making combined contig data
combined <- combineTCR(contig_list,
samples = c("P17B", "P17L", "P18B", "P18L",
"P19B","P19L", "P20B", "P20L"))
# Visualize single gene (TRBV) usage as a heatmap, grouped by sample
percentGeneUsage(combined,
genes = "TRBV",
group.by = "sample",
plot.type = "heatmap",
summary.fun = "percent")
# Visualize single gene (TRBV) usage as a barplot, grouped by sample
percentGeneUsage(combined,
genes = "TRBV",
group.by = "sample",
plot.type = "barplot",
summary.fun = "count")
# Visualize paired gene (TRBV-TRBJ) usage as a heatmap
percentGeneUsage(combined[1:2],
genes = c("TRBV", "TRBJ"),
group.by = "sample",
plot.type = "heatmap",
summary.fun = "proportion")
# Export the raw data table for single gene usage
trbv_usage_table <- percentGeneUsage(combined,
genes = "TRBV",
group.by = "sample",
exportTable = TRUE,
summary.fun = "count")
# Export the raw data table for paired gene usage
trbv_trbj_usage_table <- percentGeneUsage(combined,
genes = c("TRBV", "TRBJ"),
group.by = "sample",
exportTable = TRUE,
summary.fun = "percent")
# Visualize paired gene (TRAV-TRAJ) usage as a heatmap
vizGenes(combined[1:2],
x.axis = "TRAV",
y.axis = "TRAJ",
group.by = "sample",
summary.fun = "count")
# Visualize cross-chain gene pairing (TRBV-TRAV)
vizGenes(combined[1:2],
x.axis = "TRBV",
y.axis = "TRAV",
group.by = "sample",
summary.fun = "percent")
# Quantify and visualize TRA V-gene usage as a heatmap
percentGenes(combined,
chain = "TRA",
gene = "Vgene",
group.by = "sample",
summary.fun = "percent")
# Quantify TRA J-gene usage and export the table
ighj_usage_table <- percentGenes(combined,
chain = "TRA",
gene = "Jgene",
group.by = "sample",
exportTable = TRUE,
summary.fun = "count")
# Quantify and visualize TRB V-J gene pairings as a heatmap
percentVJ(combined[1:2],
chain = "TRB",
group.by = "sample",
summary.fun = "percent")
# 2. Quantify TRA V-J gene pairings and export the table
trav_traj_table <- percentVJ(combined,
chain = "TRA",
group.by = "sample",
exportTable = TRUE,
summary.fun = "proportion")