R/annotateInvariant.R
annotateInvariant.Rd
The annotateInvariant()
function identifies potential mucosal-associated
invariant T (MAIT) cells or invariant natural killer T (iNKT) cells from
single-cell sequencing datasets based on their characteristic TCR usage.
It extracts TCR chain information from the provided single-cell
data, checks it against known invariant T-cell receptor criteria for either
MAIT or iNKT cells, and returns a score indicating the presence (1) or
absence (0) of these invariant cell populations for each individual cell.
The function supports data from mouse and human samples, providing a
convenient method to annotate specialized T-cell subsets within single-cell
analyses.
The product of combineTCR()
or combineExpression()
.
Character specifying the type of invariant cells to annotate ('MAIT' or 'iNKT').
Character specifying the species ('mouse' or 'human').
A single-cell object or list with the corresponding annotation scores (0 or 1) added.
#Getting the combined contigs
combined <- combineTCR(contig_list,
samples = c("P17B", "P17L", "P18B", "P18L",
"P19B","P19L", "P20B", "P20L"))
#Getting a sample of a Seurat object
scRep_example <- get(data("scRep_example"))
#Using combineExpresion()
scRep_example <- combineExpression(combined, scRep_example)
#Using annotateInvariant
annotateInvariant(input.data = scRep_example, type = "MAIT", species = "human")
#> An object of class Seurat
#> 2000 features across 500 samples within 1 assay
#> Active assay: RNA (2000 features, 2000 variable features)
#> 2 layers present: counts, data
#> 1 dimensional reduction calculated: umap
annotateInvariant(input.data = scRep_example, type = "iNKT", species = "human")
#> An object of class Seurat
#> 2000 features across 500 samples within 1 assay
#> Active assay: RNA (2000 features, 2000 variable features)
#> 2 layers present: counts, data
#> 1 dimensional reduction calculated: umap