ROR1, an embryonic protein with an emerging role in cancer biology


Receptor tyrosine kinase-like orphan receptor 1 (ROR1) is a member of the ROR family consisting of ROR1 and ROR2. RORs contain two distinct extracellular cysteine-rich domains and one transmembrane domain. Within the intracellular portion, ROR1 possesses a tyrosine kinase domain, two serine/threonine-rich domains and a proline-rich domain. RORs have been studied in the context of embryonic patterning and neurogenesis through a variety of homologs. These physiologic functions are dichotomous based on the requirement of the kinase domain. A growing literature has established ROR1 as a marker for cancer, such as in CLL and other blood malignancies. In addition, ROR1 is critically involved in progression of a number of blood and solid malignancies. ROR1 has been shown to inhibit apoptosis, potentiate EGFR signaling, and induce epithelial-mesenchymal transition (EMT). Importantly, ROR1 is only detectable in embryonic tissue and generally absent in adult tissue, making the protein an ideal drug target for cancer therapy.

In Protein Cell
Nick Borcherding
Nick Borcherding
Assistant Professor

My research includes systems immunology, single-cell sequencing technology, and computational frameworks.