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Abstract
Interleukin 1 (IL-1) has long been known for 
its pleiotropic effects on in!ammation that 
plays a complex, and sometimes contrasting, 
role in different stages of cancer development. 
As a major proin!ammatory cytokine, IL-1β 
is mainly expressed by innate immune cells. 
IL-1α, however, is expressed by various cell 
types under physiological and pathological 
conditions. IL-1R1 is the main receptor for 
both ligands and is expressed by various cell 
types, including innate and adaptive immune 
cell types, epithelial cells, endothelial cells, 
adipocytes, chondrocytes, "broblasts, etc. 
IL-1 and IL-1R1 receptor interaction leads to 
a set of common signaling pathways, mainly 
the NF-kB and MAP kinase pathways, as a 
result of complex positive and negative regu-
lations. The variety of cell types with IL-1R1 
expression dictates the role of IL-1 signaling 
at different stages of cancer, which under certain 
circumstances leads to contrasting roles in 
tumor development. Recent availability of 
IL-1R1 conditional knockout mouse model 

has made it possible to dissect the role of IL-1/
IL-1R1 signaling transduction in different cell 
types within the tumor microenvironment. 
This chapter will focus on the role of IL-1/
IL-1R1 in different cell types within the tumor 
microenvironment and discuss the potential of 
targeting this pathway in cancer therapy.
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1.1  Introduction

Starting with the identi"cation of interleukin 
protein function in the early 1970s, the nomen-
clature of IL-1 was established in 1979 [1]. IL-1 
signaling transduction is well controlled and reg-
ulated via different levels of positive and negative 
regulators. There are two major agonistic IL-1 
ligands, IL-1α and IL-1β, and one antagonistic 
ligand IL-1RA (anakinra). At the receptor level, 
IL-1R1 is the major receptor mediating positive 
signaling transduction from agonistic ligands and 
is ubiquitously expressed across many cell types. 
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The IL-1 receptor accessory protein (IL-1RaP, 
also referred to as IL-1R3) facilitates the positive 
signaling via the formation of a tertiary complex 
(IL-1α or IL-1β, IL-1R1, IL-1RaP) with IL-1R1 
and accessory proteins, which recruits down-
stream signaling proteins. IL-1R2 is a decoy 
receptor that has no intracellular signaling 
domain and leads to the sequestration of agonis-
tic ligands, thus quenching downstream signaling 
activation. At the downstream effector level, the 
tertiary complex leads to activation of two major 
pathways, NF-κB and MAP kinase pathways 
(Fig.  1.1). This intracellular level of signaling 
regulation is much more complicated than the 
level of ligand-receptor interaction due to the 
interaction of a number of the downstream effec-
tor proteins, including scaffolding proteins, 
kinases, ubiquitin/de-ubiquitin enzymes, etc. The 
complex protein interactions and regulations 
often crosstalk with other signaling pathways 
such as those mediated by Toll-like receptors 
(TLRs). The detailed signaling transduction net-
works have been extensively reviewed and will not 
be discussed here [2–6]. As a negative feedback, 

IL-1 signaling activation can induce the expres-
sion of the negative regulator IL-1RA by NF-κB- 
and AP-1-dependent transcription [7, 8].

As the major agonistic ligands, IL-1α and 
IL-1β are encoded by two distinct genes with 
moderate shared homology. Both genes and pro-
teins are tightly regulated at transcriptional and 
posttranslational levels. The transcription is gen-
erally activated by NF-κB family transcription 
factors. NF-κB signaling can be activated by 
various factors, such as pathogen infection 
(pathogen-associated molecular patterns, PAMP) 
or sterile in!ammation/tissue damage (danger- 
associated molecular patterns, DAMP) via 
TLRs, NOD-like receptors (NLRs), or other 
cytokines/growth factors/chemokines. IL-1 sig-
naling can propagate IL-1 production via a posi-
tive feedback loop mediated by IκB kinase 
(IKK)/NF-kB activation. IL-1α and IL-1β are 
not secreted via classic endoplasmic reticulum/
Golgi pathways. IL-1α and IL-1β proteins are 
translated as pro- forms and secreted via distinct 
mechanisms.

IL-1α Biogenesis: Pro-IL-1α can be posttrans-
lationally modi"ed by phosphorylation, myris-
toylation, and acetylation, although the functional 
signi"cance of these modi"cations is yet to be 
determined. Pro-IL-1α is active and binds to 
IL-1R1 equally compared to the cleaved IL-1α. 
Several proteases including calpain, granzyme B, 
elastase, or chymase can cleave pro-IL-1α into 
the mature forms at different cleavage sites. The 
biological function of pro-IL-1α/IL-1α comes 
from different locations, including the induction 
of IL-1R1 canonical signaling transduction via 
released or membrane-bound pro-IL-1α/IL-1α or 
nuclear pro-IL-1α/IL-1α. Current theory involves 
the release of pro-IL-1α through necrosis- 
mediated passive release as an “alarmin.” The 
alarmin function of IL-1α noti"es adjacent 
immune cells of potential damage to tissues and 
stimulates regeneration. The release of mature or 
cleaved IL-1α is less understood, likely via a sim-
ilar mechanism as mature IL-1β release.

IL-1β Biogenesis: Even though pro-IL-1β is 
similarly translated, it has no bioactivity to induce 
IL-1R1-mediated signaling pathways in the 
pro- form. Protease-mediated cleavage, primarily 

Fig. 1.1 Essential components of IL-1 signaling 
transduction
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via caspase-1 (Casp-1), leads to the release of 
mature IL-1β from the cytosol to extracellular 
space, via either pyroptosis (in!ammatory cell 
death) or some other not-well-de"ned mecha-
nism. The key enzyme Casp-1 is activated via a 
controlled mechanism during infection or sterile 
in!ammation during injury, stress, and metabolic 
alterations. Innate immune cells, such as macro-
phages, can sense different molecular signatures, 
PAMPs or DAMPs, through sensing molecules in 
the NLR family, including NLRP1, NLRP3, and 
NLRC4, or pyrin family protein AIM-2. Via the 
adaptor protein apoptosis-associated speck-like 
containing CARD (ASC), the sensors, ASC, and 
pro-Casp-1 form an activating complex referred 
to as an in!ammasome. Upon sensing various 
molecular signatures, the in!ammasome com-
plex forms, leading to the auto-cleavage of 
Casp-1 from pro-Casp-1 into p20/p10 tetramers 
with protease activity. The protease activity of 
the tetramers results in the cleavage of pro-IL-1β 
and pro-IL-18 into their mature forms. It is criti-
cal to understand how these different in!amma-
somes are activated in a tumor microenvironment 
in order to understand the cellular sources of 
IL-1β production and the downstream events. 
Most in!ammasome-relevant studies have 
focused on macrophages in tumor microenviron-
ment. Others and we have extensively reviewed 
the role of different in!ammasomes in different 
cancers that will not be discussed in detail in this 
chapter [9–13]. There are other mechanisms that 
can lead to IL-1β processing and activation in 
neutrophils via neutrophil-speci"c proteases 
upon certain bacterial infections [14]. Neutrophil- 
based IL-1ββ activation may be dependent on 
cathepsin G in lung cancer, which is critical to 
mediate cancer resistance to IKK/NF-κB inhibi-
tion [15]. There are emerging reports of the 
pathogenic role of neutrophils in cancer [16–18], 
and neutrophil-produced IL-1β likely plays an 
important role for cancer in!ammation, progres-
sion, and metastasis.

The ubiquitous expression of IL-1R1 compli-
cates clear elucidation of the role of IL-1 signal-
ing due to the various, and sometimes opposing, 

roles in different effector cells. For example, 
reports have shown opposing effects of IL-1R1- 
mediated signaling transduction in myeloid cells 
versus T-cells in mouse model of colon cancer 
[18]. In addition to cancer cells, the tumor micro-
environment contains most immune cell types, 
"broblasts, endothelial cells, adipocytes, and 
tissue- speci"c cell types, many of which express 
IL-1R1. Therefore, the overall effect of the IL-1 
signaling pathway in certain cancer types needs 
to be carefully dissected. The chapter will focus 
on the role of IL-1 signaling transduction in vari-
ous cell types under physiological and pathologi-
cal conditions, including several types of cancer 
(Table 1.1).

1.2  IL-1 Signaling Pathway 
in Di"erent Cancers

The IL-1/IL-1R1 signaling axis primarily induces 
pro-survival and pro-proliferative MAP kinase 
signaling, which generally promotes cancer pro-
gression. The pro-tumorigenic function of IL-1 
has been an accepted concept, especially in 
regard to IL-1β, based on in vitro data and in vivo 
tumorigenic models. However, there are contra-
dictory results, indicating more complex signal-
ing transduction/crosstalk between IL-1 and 
other signaling pathways. Here we will focus on 
the cancer types with strong support from geneti-
cally modi"ed mouse models (GEM) related to 
core IL-1 signaling, including IL-1α, IL-1β, 
IL-1R1, and IL-1Ra. The in!ammasome mouse 
models have been extensively discussed in out-
standing reviews [9–13]. The downstream effec-
tors are always shared with other pathways that 
may complicate experimental interpretation due 
to the signaling crosstalk. An important point of 
clari"cation before continuing is that most stud-
ies rely on whole-body knockout or cancer-cell- 
line injection models in wild-type or 
immunocompromised mice. The cancer pheno-
types are a result of combinatory impacts of the 
IL-1 signaling on different cell types within 
tumor microenvironment.

1 IL-1 Signaling in Tumor Microenvironment



4

Table 1.1 Cancer phenotypes related to IL-1 core signaling components

Molecules Major functions References
Breast cancer
IL-1β Inhibits ER-positive breast cancer cell growth but promotes an aggressive invasive 

mesenchymal phenotype
[19, 20, 
22, 23]

Promotes migration and EMT in triple-negative breast cancer cells [26, 27]
Cancer cell intrinsic expression is correlated with relapse [30]
Promotes metastasis in lobular carcinoma mouse model [17]
Macrophage-produced IL-1β promotes angiogenesis and progression under obese 
conditions

[50, 51]

Promotes an imbalance between tumor-in"ltrating  macrophages and dendritic cells leading 
to decreased CD8 T-cell activation

[49]

IL-1 de"ciency reduces tumorigenesis in a PyMT spontaneous breast cancer mouse model [56]
IL-1α Suppresses ER-positive breast cancer cell growth in vitro [34]

Promotes ER-positive breast cancer tumor growth in vivo [35]
Expression in ER cells is correlated with a more malignant phenotype and cancer 
progression

[36–40]

4T1 cancer cell-derived IL-1α promotes cell survival and metastasis via inductions of TSLP 
from neutrophils

[16]

Sarcoma
IL-1β Polymorphisms are associated with risk of osteosarcoma [71]

Expression in "brosarcoma cells induces a more aggressive phenotype and increased 
angiogenesis

[72]

Promotes tumorigenesis and invasiveness in 3-MCA- induced "brosarcoma model [75]
IL-1α Induces genes associated with survival, cell cycle, in!ammation, and ECM remodeling  in 

sarcoma cell lines
[60–62]

Expression in "brosarcoma cells induces antitumor immunity [72]
Involved in escape form immunosurveillance [76]

Liver cancer
IL-1β Polymorphisms are associated with increased risk of hepatocellular carcinoma [77–79]

Promotes tumorigenesis in DMBA plus obesity-induced liver cancer model [83]
Activation downstream of NLRP3 in!ammasome activation likely plays a role in HCV-
related liver cancer

[84, 85]

Macrophage-produced IL-1β acts synergistically with EGF to induce IL-6 in macrophages, 
an important tumor-promoting cytokine in HCC

[87]

IL-1α Released from ROS-damaged hepatocytes and promotes carcinogenesis in a carcinogen-
induced liver cancer model

[80]

Melanoma
IL-1β Promotes lung metastasis and adhesion to endothelial cells [92, 93]

Macrophage-produced IL-1β signals through "broblasts and endothelial cells to promote 
angiogenesis and the upregulation of tumor- promoting factors

[88]

Promotes invasiveness, metastasis, and angiogenesis in B16 mouse models [100, 
101]

IL-1α Promotes lung metastasis and adhesion to endothelial cells [92, 93]
Critical for oncogenic RAS-induced keratinocyte transformation [106]
Inhibits carcinoma formation when overexpressed in keratinocytes [107]

Colon cancer
IL-1β Promotes VEGF expression, EMT, invasion, and growth of human colon cancer cells [112–

115]
Polymorphisms are associated with recurrence [117]

IL-1R1 Promotes tumorigenesis and early progression in colon epithelial cells [18, 123]
Promotes tumor-elicited in!ammation via IL-17 and IL-22 induction in CD4 T-cells and 
possibly IL-C3

[18]

Loss in neutrophils increases bacteria-induced in!ammation and increased tumor load [18]
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1.2.1  Breast Cancer

1.2.1.1  Human Cancers
Early studies supported a growth-inhibitory role 
of IL-1β in estrogen receptor (ER)-positive 
MCF-7 cells, whereas IL-1β has minimal effect 
on other breast cancer cell lines without ER 
expression [19, 20]. Interestingly, the inhibitory 
function of IL-1β in MCF-7 cells is likely due to 
the crosstalk with downstream signaling mediated 
by insulin-like growth factor 1 (IGF1) and insulin 
receptor substrate 1 (IRS-1), leading to the inhibi-
tion of phosphatidylinositol 3-kinase/Akt signal-
ing pathway (PI3K/AKT) [21]. Later research 
using the same MCF-7 cells suggested that IL-1β 
promotes an aggressive phenotype of MCF-7, i.e., 
the migration/invasion and a mesenchymal phe-
notype [22, 23]. This invasive phenotype may be 
a result of the activation of Src homology (SH) 
2-containing phosphotyrosine phosphatase (Shp-
2) leading to the expression of matrix metallopro-
teinase 9 (MMP-9) [22] and the synergistic 
induction of Erk1/2 activation with epidermal 
growth factor (EGF) [24]. In a separate study 
using MCF-7 cells, IL-1β induced a kinase cas-
cade involving NF-κB-inducing kinase (NIK), 
IKKα, and the consequent activation of NF-κB in 
a reactive oxygen species (ROS)-dependent man-
ner [25], a possible parallel mechanism for IL-1β-
induced aggressive phenotype of MCF-7 cells. 
Similar promotion of a migratory phenotype by 
IL-1β was seen in triple- negative breast cancer 
cells, MDA-MB-231, where IL-1β induces the 
expression of hypoxic- inducible factor α (HIF-1α) 
and the CXCR1 chemotaxis pathway [26]. A non-
canonical activation of IL-1β-mediated β-catenin 
signaling was also reported [27] that leads to the 
onset of epithelial- mesenchymal transition 
(EMT). The signi"cant induction of EMT by 
IL-1β also links to another important feature of 
breast cancer, maintaining the tumor-initiating 
cells via an NF-κB-dependent mechanism [28]. 
Interestingly, IL-1β in!ammatory response phe-
notypically locks metastasis- initiating cancer 
cells (MICs) at a ZEB1-positive mesenchymal 
stage that cannot reverse for the subsequent epi-
thelial colonization process [29]. The dormancy-
locked MIC cells can undergo epithelial transition 

by inhibition of IL-1β pathway to establish mac-
rometastasis [29]. The source of IL-1β is thought 
to be derived from innate immune cells under 
in!ammatory conditions; however, breast cancer 
cells can turn on IL-1β expression [30]. The role 
of IL-1β in breast cancer metastasis is strongly 
supported by clinical data showing that cancer-
cell-intrinsic expression of IL-1β protein signi"-
cantly correlates with relapse in bone and other 
sites in a large patient cohort (greater than 1300 
patients) with stage II/III breast cancer [30]. 
IL-1β/IL-1R1 inhibition by anakinra (IL-1RA) or 
canakinumab (human- speci"c IL-1β antibody) 
reduced bone metastasis, likely via a cancer-cell-
intrinsic autocrine pathway [30, 31]. In a recent 
pilot clinical trial involving HER2-negative meta-
static patients, anakinra (IL-1RA) treatment mod-
ulated transcriptional signature in blood 
leukocytes leading to decreased IL-1 signaling, 
NF-κB signaling, and innate immunity but 
increased genes involved in NK- and T-cell-
mediated cytotoxicity. This anakinra-modulated 
signature, i.e., the IL-1β /IL-1R1-induced gene 
signature, can faithfully predict breast cancer 
patients with poor prognosis [32].

The cancer-cell-intrinsic function of IL-1α is 
much less understood in breast cancer. Limited 
literature supports that IL-1α may promote 
human breast cancer progression. Similarly to 
IL-1β, IL-1α was initially identi"ed as a sup-
pressor for estrogen-induced growth of ER+ 
MCF-7 cells and downregulated ER protein 
either alone [33] or in addition to IL-6 [34]. This 
in vitro inhibitory effect of IL-1α con!icts with 
an in  vivo tumorigenic study where MCF-7 
tumors with IL-1α overexpression grew faster 
than control cells [35], suggesting that IL-1α 
plays a dominant role in tumor microenviron-
ment in the MCF-7 xenografts. In ER-negative 
breast cancer cells, IL-1α is preferentially pro-
duced by cancer cells with a greater basal or 
stem cell phenotype [36] and induces down-
stream activation of NF-κB and IL-6 production 
to promote cancer progression [37] and other 
metastatic genes [38]. In agreement, IL-1α pro-
tein secretion is correlated with a more malig-
nant phenotype [39] and ER negativity [40]. This 
may underscore a potential local paracrine and 

1 IL-1 Signaling in Tumor Microenvironment
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autocrine role of IL-1α in the maintenance of a 
more malignant phenotype.

There exist a number of publications regard-
ing the polymorphisms of genes encoding for 
IL-1 family cytokines and their association with 
breast cancer risk, but the conclusions are 
unequivocal. Based on a meta-analysis of total 
1277 breast cancer cases and 1431 control cases, 
there is no signi"cant correlation between three 
IL-1β polymorphisms with breast cancer risk [41, 
42]. This lack of correlation between IL-1β poly-
morphisms with breast cancer is supported by 
other studies including one in Korean women 
[43] and another in Caucasian women [44]. 
Meanwhile, several reports indicate IL-1RN 
(encoding IL-1R antagonist IL-1RA) polymor-
phisms are marginally associated with breast 
cancer risks [44, 45]. Similarly, IL-1α gene poly-
morphism at the C-terminal untranslated region 
(rs3783553, TTCA insertion genotype) is signi"-
cantly associated with a decreased risk of breast 
cancer [46] due to the differential regulation by 
miR-122 and reduction in IL-1α expression [47]. 
An additional IL-1α polymorphism was corre-
lated with increased breast cancer risk based on a 
multiplex genotyping of 1107 SNPs from 232 
candidate genes [48].

1.2.1.2  Mouse Models
In the 4 T1 syngeneic transplant model, tumor- 
intrinsic IL-1α led to the recruitment of neutro-
phils and subsequent thymic stromal 
lymphopoietin (TSLP) production, which in turn 
promotes tumor cell survival and metastasis [16]. 
IL-1β can also promote metastasis in 
K14cre;Cdh1F/F;Trp53F/F (KEP), a lobular 
breast cancer model in an IL-1R1-dependent 
manner. IL-1 signaling leads to IL-17 production 
from γδ T-cells, which in turn leads to G-CSF 
expression and enhanced production and recruit-
ment of metastasis-promoting neutrophils [17]. 
These neutrophils are critical in suppressing the 
cytotoxic and antimetastatic activity of CD8 
T-cells [17]. In a more recent report, IL-1β was 
shown to balance the tumor-in"ltrating macro-
phages versus CD11b  +  dendritic cells (DCs), 
with IL-1β de"ciency leading to increased IL-12- 
producing CD11b  +  DCs and prevailing CD8 

T-cell-mediated antitumor immunity [49]. 
Inhibition of IL-1β and an “immune checkpoint” 
(programmed cell death-1, PD-1) synergistically 
suppresses breast cancer growth [49]. In obesity, 
which generally promotes breast cancer in 
humans and animal models, our group identi"ed 
that IL-1β is a causal effector molecule that drives 
obesity-induced breast cancer progression as a 
downstream effector of the NLRC4 in!amma-
some activation [50, 51]. Obesity induces an 
increase in tumor-in"ltrating macrophages that 
produce IL-1β and activate subsequent expres-
sion of VEGFA and ANGPTL4 within adipocytes 
to induce angiogenesis [50, 51]. Genetic and 
pharmacological inhibition of IL-1β/IL-1R1 sig-
naling suppresses obesity-driven cancer growth 
and angiogenesis [50, 51]. The NLRP3 in!am-
masome/IL-1β can also activate within tumor- 
associated macrophages, leading to angiogenesis 
and cancer progression [52, 53]. The exact mech-
anism for NLRC4 in!ammasome activation in 
obesity-driven breast cancer remains not fully 
understood. Since NLRC4 is only known to sense 
bacterial products such as !agellin or type III 
secretion system, it is likely that NLRC4 senses 
obesity-associated bacterial products either via 
circulation or from microbiota detected within 
adipose tissues [54].

All syngeneic models described above focus 
on the role of IL-1/IL-1R1 signaling in tumor 
immune microenvironment. In a recent report 
using the polyoma middle T-antigen mammary 
carcinoma model (MMTV-PyMT), IL-1α/
IL-1R1 signaling pathway was shown to be 
clearly tumor-suppressive as IL-1R1−/− and 
IL-1α−/− mice showed signi"cantly elevated 
 tumorigenesis and lung metastasis relative to 
wild-type and IL-1β−/− mice [55]. The authors 
did not identify any signi"cant change in major 
tumor-in"ltrating immune cell subtypes, albeit a 
trend toward increased macrophages in IL-1R1−/− 
tumors. This tumor-suppressive phenotype is 
likely due to a direct impact on tumor cells. 
These "ndings are further supported by an ear-
lier report that found that tumors in MMTV-
PyMT mice do not rely on adaptive immune 
cells for primary tumor growth but require them 
for lung metastasis [56]. As PyMT breast cancer 

W. Zhang et al.
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model is clearly de"ned as luminal breast cancer 
[57], it is conceivable that IL-1α/IL-1R1-
mediated inhibitory effect is via the interaction 
with ER signaling during early initiation and 
progression stages, similarly as reported in 
human ER+ MCF-7 cells [19, 20, 33]. As PyMT 
tumors lose ER expression in late stages and 
metastasis, how IL-1α/IL-1R1 signaling sup-
presses metastasis is yet to be explained. The 
discrepancy between PyMT model and IL-1α 
polymorphisms in humans underscores the com-
plex role of IL-1α in breast cancer. There could 
be a delicate balance between IL-1α- mediated 
immunosurveillance and IL-1α- induced cancer 
cell survival and proliferation.

1.2.2  Sarcoma

1.2.2.1  Human Cancers
Human data related to IL-1α and IL-1β is rela-
tively sparse. The expression of both IL-1 ligands 
has been reported in human sarcoma cells [58, 
59]. Using the osteosarcoma line MG-63, signal-
ing through IL-1α induces a panel of genes 
involving protein synthesis (S6K, increased 
22-fold), signaling proteins (PP2A), antiapop-
totic gene (cIAP1 or BIRC2, increased 20-fold), 
cell cycle (CDC42BPB, increased 16-fold), and 
in!ammation (MIP2β or CXCL3, increased sev-
enfold) [60]. Collectively, the IL-1α-induced 
expression changes indicate various potential 
functions in cell cycle, viability, and in!amma-
tion. IL-1α also induces matrix metalloproteinase 
3 (MMP-3), IL-6, BMP-2, and Cox2 production 
in the SW1353 chondrosarcoma line [61, 62], 
indicating possible functions in tissue remodel-
ing, in!ammation, and invasion. A similar set of 
genes were also regulated by IL-1β in sarcoma 
cell lines [63–67], in addition to its regulation on 
microRNAs [68, 69]. At the mechanistic level, 
IL-1 induces classic NF-kB and MAP kinase 
activation to regulate downstream gene expres-
sion pattern [64, 65, 70]. There is only a single 
report using 120 patients "nding that two IL-1β 
polymorphisms are associated with risk of osteo-
sarcoma [71].

1.2.2.2  Mouse Models
Using mouse "brosarcoma cell lines, IL-1α and 
IL-1β have very distinct roles in sarcoma progres-
sion. IL-1α overexpression in "brosarcoma is 
located at the plasma membrane and transduces 
an antitumor immunity from cell surface to effec-
tor immune cells, evidenced by increased mono-
nuclear immune cells in the tumor sites, as well as 
increased CD8 T-cell and IFNγ production [72]. 
IL-1β production in the same cells led to a more 
aggressive tumor growth with increased angio-
genesis [72]. Fibrosarcomas with IL-1α de"-
ciency grew more aggressive tumors, whereas 
those with IL-1β de"ciency grew smaller tumors 
when using immunode"cient Nu/Nu mice [73] 
and immunocompetent mice [74]. The above can-
cer-cell-intrinsic IL-1α and IL-1β production is 
limited to tumor and its microenvironment. Using 
whole-body knockout mice, Krelin et al. used the 
3-methylcholanthrene (3-MCA)-induced "bro-
sarcoma model in IL-1β−/−, IL-1α−/−, IL-1α/β−/− 
(double knockout), and IL-1Rα −/− mice with the 
Balb/C genetic background and found IL-1β, but 
not IL-1α, was able to promote tumorigenesis and 
invasiveness [75]. There is an observation of 
strong in!ammatory response related to IL-1β-
induced tumorigenesis that can be blocked by 
anakinra, suggesting a proin!ammatory microen-
vironment is essential for tumorigenesis and pro-
gression in this model [75]. Though IL-1α did not 
exhibit a role in the MCA- induced primary "bro-
sarcomagenesis, it is critically involved in immu-
noediting of cancer cells that prevents the cancer 
cells from T-cell- and, to a lesser extent, NK-cell-
dependent immunosurveillance [76]. These data 
suggest that both cancer- cell-intrinsic and host 
productions of IL-1 β play a role in the promotion 
of sarcoma, whereas IL-1α has a more compli-
cated function depending on the location.

1.2.3  Liver Cancer

1.2.3.1  Human Hepatocellular 
Carcinoma (HCC)

A recent epidemiological study from South Korea 
identi"ed IL-1β polymorphisms are signi"cantly 
associated with HCC, with two polymorphisms 

1 IL-1 Signaling in Tumor Microenvironment
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associated with decreased risk and one with 
increased HCC risk [77]. In the same study, no 
IL-1α or IL-1RA polymorphisms were associated 
with HCC risk [77]. A similar result was shown in 
HCC with preexisting HCV infection in a 
Japanese cohort [78] and an Egyptian cohort [79], 
with IL-1β polymorphisms associated with HCC 
risk but not in IL-1RA or TNFα genes. A separate 
study using two large cohorts of Chinese HCC 
patients identi"ed an insertion/deletion polymor-
phism at the miRNA-122 binding site of IL-1α 3′ 
untranslated region increased the risk of HCC 
development. The relevant polymorphism dis-
rupts the binding of miR-122 to mRNA, resulting 
in an increase in IL-1α expression and HCC risk 
[47]. The same polymorphism is also associated 
with a risk of breast cancer [46], indicating a gen-
eral tumor-promoting function of IL-1α in various 
cancer types. These data suggest IL-1/IL-1R sig-
naling transduction may play a critical role during 
human HCC development.

1.2.3.2  Mouse Models
In a procarcinogen diethylnitrosamine (DEN)-
induced liver cancer model [80], DEN induces 
HCC via the induction of massive hepatocyte 
killing, recruitment of myeloid cells, and the pro-
duction of proin!ammatory cytokines that stimu-
late compensatory proliferation of remaining 
mutated hepatocytes [81, 82]. IL-1α is one of the 
cytokines that is released by hepatocyte damage 
upon the accumulation of excessive ROS, which 
in turn promotes hepatocyte proliferation and 
survival via IL-1R1- and Myd88-mediated signal 
transduction [80]. This process does not involve 
IL-1β, as de"ciency in IL-1β or its major activa-
tor Casp-1 did not promote DEN-induced HCC 
development [80]. Interestingly, under certain 
conditions, such as 7,12-dimethylbenzathracene 
(DMBA) plus obesity-induced liver cancer in 
neonates, IL-1β is important for liver cancer 
development via regulating a senescence-related 
secretion phenotype (SASP) [83]. This suggests 
that obesity-associated chronic in!ammation, 
similarly to what we have seen in breast cancer 
[50], relies on IL-1β to transmit tumor-promoting 
in!ammation. Chronic infection of hepatitis C 
virus (HCV), one of the major epidemiological 

factors for human HCC, also activates NLRP3 
in!ammasome and IL-1β within hepatic macro-
phages to induce chronic in!ammation and likely 
contributes to HCV-related HCC in humans [84, 
85]. One of the mechanisms of liver-macrophage- 
produced IL-1β is the synergy with EGFR- 
mediated IL-6 production [86], one of the critical 
proin!ammatory cytokines that promote HCC 
[87] and may account for sex differences of HCC 
patients [82].

1.2.4  Melanoma/Skin Cancer

1.2.4.1  Human Melanomas
IL-1R1 is mainly expressed by tumor-associated 
endothelial cells and "broblasts, whereas IL-1β is 
mainly expressed by tumor-associated macro-
phages [88]. There are inconsistent reports 
whether human melanoma cell lines express 
IL-1β using various reagents, but several reports 
conclude that melanoma cell lines are not the 
major source of IL-1β protein due to the lack of 
in!ammasome components [88, 89]. IL-1α is 
expressed uniformly in nevi, primary tumors, and 
metastases [90, 91]. Early studies have shown 
that IL-1α/β induces experimental lung metasta-
sis in A375 xenografts [92] and promotes tumor 
cell adhesion to endothelial cells [93]. The IL-1β/
IL-1R1 signaling cascade seems to be initiated 
by cancer cells, via an unknown mediator, to 
induce IL-1β transcription and processing in 
macrophages [88, 89]. Fibroblasts and endothe-
lial cells propagate the signal from macrophage- 
produced IL-1β, leading to cancer-promoting 
factors and angiogenesis [88]. The autocrine 
IL-1β/IL-1R1 signaling cascade within macro-
phages is also important to promote DNA meth-
ylcytosine dioxygenase Tet2, which sustains 
immunosuppressive function and promotes mela-
noma progression [94]. Although IL-1R1 is gen-
erally expressed below detectable levels in 
human melanoma, IL-1 can induce downstream 
signaling activation using human melanoma cell 
lines [95] and invasiveness via upregulation of 
adhesive molecules from both cancer cells and 
endothelial cells in human xenografts [96, 97]. 
Limited genetic information indicates that IL-1β 
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polymorphism is marginally associated with 
invasive phenotype [98] and IL-1RA genotype is 
associated with patient survival [99].

1.2.4.2  Mouse Models
Most IL-1-related mouse models of melanoma 
are from syngeneic transplantation of B16 mouse 
melanoma cell line. This model provides excel-
lent resources for host IL-1 signaling in cancer 
immunity, in!ammation, and angiogenesis. Early 
studies de"ned the role of IL-1β as required for 
invasiveness, metastasis, and angiogenesis via 
the induction of VEGFA and lymphotoxin [100, 
101]; IL-1α has a similar function with a weaker 
phenotype [100]. IL-1β has also been shown to 
promote hepatic metastasis of melanoma via 
upregulation of vascular cell adhesion molecule-
 1 (VCAM-1) [102], presumably via retention of 
cancer cells to endothelial cells. Treatment of 
B16 melanoma with IL-1RA reduces tumor 
growth and lung metastasis [103], suggesting that 
IL-1 signaling may be a viable target for mela-
noma therapy.

Con!icting results have been reported in the 
two-stage 7,12-dimethylbenzanthracene/12-O- 
tetradecanoylphorbol-13-acetate (DMBA/TPA)-
induced skin cancer model. The DMBA/TPA 
model has limitations but currently is the only 
model used for studying IL-1 signaling in 
carcinogen- induced skin cancer model. Drexler 
et  al. reported the critical role of IL-1R1 and 
Casp-1  in tumor progression, with whole-body 
deletion of IL-1R1 or Casp-1 leading to less 
tumorigenesis relative to the wild-type controls 
[104]. Similar result was also seen in a separate 
study using genetic knockout of IL-1R1 and 
MyD88 [105]. The involvement of Casp-1 
strongly indicates the involvement of IL-1β, not 
IL-1α, in the DMBA/TPA-induced skin cancer. 
However, the involvement of IL-1α is vital in the 
mediation of the oncogenic RAS-induced kerati-
nocyte transformation via IL-1R1- and MyD88- 
mediated signaling transduction [106]. 
Interestingly, the transgenic expression of IL-1α 
under the keratin-14 promoter, which drives 
IL-1α expression from keratinocytes, completely 
inhibits papilloma and carcinoma formation, 

suggesting a tumor-suppressive/immunosurveil-
lance phenotype of IL-1α overexpression [107].

1.2.5  Colon Cancer

1.2.5.1  Human Colorectal Cancer (CRC)
Expressions of IL-1α and IL-1β are detectable 
in colonic epithelial cells, with Casp-1 and 
IL-1β largely diminished within colon cancer 
cells [108]; however, both Casp-1 and IL-1β are 
elevated in CRC tumors versus normal tissues 
likely due to tumor-in"ltrating immune cells. 
IL-1α is maintained in colon cancers and can be 
induced further by proin!ammatory stimuli, 
like prostaglandin E2, to boost in!ammation 
and likely carcinogenesis [109] or to induce 
angiogenesis and IL-8 production in endothe-
lial cells [110, 111]. IL-1β, presumably mainly 
from myeloid cells, directly works on human 
colon cancer cells to promote VEGF expression 
for angiogenesis [112, 113], Zeb1 for EMT, 
stemness and invasion [114], Wnt signaling for 
cancer growth [115], and COX2 for in!amma-
tion [116]. This is largely in agreement with the 
role of IL-1/IL-1R1 signaling in promoting 
CRC development and progression. 
Polymorphisms of IL-1β and IL-1RA have been 
shown to be associated with tumor recurrence 
in stage II colon cancer [117], and IL-1RA gen-
otype is associated with colorectal cancer risk 
[118].

1.2.5.2  Mouse CRC-Colitis-Associated 
Colorectal Cancer (CAC) by 
AOM/DSS and CRC by CPC-APC

The impact of IL-1/IL-1R1 signaling transduc-
tion is very perplexing in colon cancer mouse 
models, as shown initially in a lack of discernable 
phenotype in IL-1R1−/− mice with azoxymeth-
ane/dextran sodium sulfate (AOM/DSS)-induced 
early colitis and CAC [119], as well as in 
CDX2Cre-Apcf/wt (CPC-APC) mouse model of 
conditional monoallelic APC loss in the colon to 
induce CRC [18]. IL-1 signaling has been shown 
to be important in stimulating IL-17 production 
and Th17 differentiation, two key events that are 
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known to promote CRC [120, 121]. Upon the 
availability of the recently made IL-1R1 condi-
tional knockout mice [122], the Grivennikov 
group performed elegant work to dissect the roles 
of IL-1R1 on colonic epithelial cells, T-cells, and 
myeloid cells. In epithelial cells, IL-1R1 pro-
motes initial tumor outgrowth and early progres-
sion [18], likely due to the antiapoptotic role of 
the major downstream IKKβ-mediated NF-kB 
activation [123]. In CD4 T-cells, IL-1R1- 
mediated signaling transduction is critical for 
eliciting IL-17 and IL-22 production [18] and 
maintaining tumor-elicited in!ammation, hence 
driving CRC progression particularly via activa-
tion of STAT3 [124–126]. In contrast, IL-1R1 in 
myeloid cells plays an opposite role in tumor- 
elicited in!ammation and CRC progression [18]. 
Neutrophil-speci"c IL-1R1 depletion leads to a 
de"cit in neutrophil-mediated bacterial killing, 
thus increasing bacteria-induced tumor-elicited 
in!ammation [18]. As a result, there is a larger 
tumor load in mice with neutrophil-speci"c 
IL-1R1 depletion. Within myeloid lineages, neu-
trophils are the dominant cell type to mediate 
IL-1R1 signaling since CX3CR1-Cre-mediated 
IL-1R1 deletion in the intestinal and tumor- 
associated macrophages did not yield any signi"-
cant phenotype, while broader Il-1R ablation in 
myeloid populations using CD11b-Cre or LysM- 
cre demonstrated the same phenotype as in 
Ly-6G-Cre-mediated-neutrophil-speci"c dele-
tion of IL-1R1. This neutrophil-mediated bacte-
rial killing is enhanced by IL-1β treatment 
in vitro [18], indicating an anti-in!ammatory role 
of IL-1β/IL-1R1 when encountering microbes in 
colon. IL-1α and IL-1β are not created equal in 
controlling colonic in!ammation prior to carci-
nogenesis. In DSS-induced colitis, IL-1α is 
released by DSS-induced necrosis of intestinal 
epithelial cells as an alarmin to initiate limited 
colon in!ammation and repair; IL-1β, on the 
other hand, plays a major role in colon repair 
[127], likely via an indirect neutrophil activation, 
microbial control, and/or direct pro-survival 
pathways in colonic epithelial cells to maintain 
the integrity of the barrier. Absence of IL-1β 
leads to severe colitis, a similar phenotype as 
IL-1R1−/− mice [127], indicating IL-1β-mediated 
myeloid activation and bacterial killing play a 

predominant role in preventing colitis in this 
DSS-induced mouse colitis model.

1.2.6  Other Cancers

Data from IL-1-related GEM models is lacking 
in most other cancer types. Research based on 
cancer cell lines or genetic data suggests that 
IL-1 signaling is critical for other cancers as well, 
including association of polymorphisms with 
risks [128–134], the promotion of aggressiveness 
in cancer by working on either cancer cells or 
microenvironment, and angiogenesis. For exam-
ple, neutrophils can produce IL-1β in an 
in!ammasome- independent manner, which is 
critical to mediate lung cancer resistance to IKK/
NF-κB inhibition [15]. The same process is likely 
important for driving oncogenic KRAS-NF-κΒ 
addiction in malignant pleural effusion, a critical 
process for metastasis in lung cancer and other 
solid cancers [135]. In castration-resistant pros-
tate cancer, IL-1RA upregulation by a combined 
immune checkpoint blockade and myeloid- 
derived suppressor cell (MDSC)-targeted therapy 
is critical to reduce MDSC in"ltration [136]. 
Treatment with anakinra, the IL-R1 antagonist, 
provides an immune-permissive microenviron-
ment that sensitizes castration-resistant prostate 
cancer to immune checkpoint blockade [136]. 
Based on all the information related to mouse and 
human data, the prevailing function of IL-1/
IL-1R1-mediated signaling transduction in 
 cancer is to promote cancer progression, and tar-
geting IL-1/IL-1R1 signaling pathway could 
potentially bene"t a large cancer patient 
population.

1.3  IL-1 Signaling Pathway 
in Di"erent Cell Types Within 
Tumor Microenvironment: 
A Brief Summary

1.3.1  Cancer Cells

Cancer cells can be the primary target for IL-1 
signaling that mostly transmits from IL-1/
IL-1R1/IL-1RAcP to downstream IKK/NF-κB or 
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MAP kinase (JNK/p38). Those pathways are crit-
ical for the pro-survival and pro-invasive function 
of carcinoma cells. In addition, IL-1 can work on 
cancer cells to produce other factors such as 
VEGF for angiogenesis, IL-6 and TNF for tumor- 
induced in!ammation, and other chemokines, 
cytokines, and growth factors to promote cancer 
progression. JNK and p38 activation, however, 
can initiate apoptosis under certain conditions, 
without the counteraction from IKK/NF-κB pro- 
survival function. The net signaling outcome can 
be suppressive for cancer cell growth. As cancer 
cells are not the primary focus of this chapter, we 
will not get into details here.

1.3.2  Fibroblasts

Fibroblasts can produce IL-1 and propagate IL-1 
signaling. It has been shown that herpes simplex 
virus 1 (HSV-1) infection induces activation of 
NLRP3 in!ammasome and consequent IL-1β 
activation in "broblasts [137]. G-protein-coupled 
estrogen receptor (GPER) can induce IL-1β tran-
scription and activation (presumably via NLRP3 
activation) in cancer-associated "broblasts 
(CAFs) [138]. Fibroblasts have been shown to 
relay macrophage-derived IL-1β signaling to 
induce cancer-promoting factors and angiogene-
sis [88]. In CAF cells, IL-1α has been shown to 
induce leukemia inhibitor factor (LIF) via a non-
canonical JAK/STAT pathway, which contributes 
to the generation of in!ammatory CAF and 
shapes CAF heterogeneity in pancreatic cancer 
[139]. IL-1 has been shown to induce PD-L1 and 
COX-2  in melanoma-associated "broblasts, 
which is critical to induce immunosuppression in 
oncogenic BRAF melanoma [91]. Cellular senes-
cence of "broblasts has been shown not only to 
inhibit tumorigenesis early in life but to promote 
cancer in aged organisms [140]. Membrane- 
bound IL-1α serves as a critical upstream regula-
tor of senescence-associated secretory phenotype 
(SASP) in senescent "broblasts [141], where 
IL-1α mRNA is induced by NF-κB-mediated 
transcription and its protein is translated by 
mTOR-mediated mechanism [142].

1.3.3  Adipocytes

Adipocytes are integral components among sev-
eral cancer types such as pancreatic and breast 
cancers. Cancer-associated adipocytes are known 
to produce IL-1β that can interact with other cell 
types within tumor microenvironment [143–145]. 
Adipose tissue is among the top expressers for 
IL-1R1 based on human protein atlas, indicative 
of its capability to receive IL-1 signaling trans-
duction. Unsurprisingly, we found adipocytes are 
the major effector cells of myeloid IL-1β in obese 
animals carrying breast cancer [50, 51]. IL-1β 
induces various angiogenic factors including 
VEGF and ANGPTL4 to promote cancer pro-
gression [50, 51].

1.3.4  Endothelial Cells

Endothelial cells have long been known to be a 
direct or indirect target of IL-1 signaling. Many 
cell types, including endothelial cells, within 
tumor microenvironment can produce VEGF 
upon IL-1 activation, the growth factor for endo-
thelial cells during angiogenesis. In turn, IL-1 
and VEGF synergize to promote angiogenic 
response, and both factors are required for angio-
genesis [101]. An interesting observation from a 
nontumor model de"nes a role of IL-1β in mobi-
lizing endothelial progenitor cells, a process that 
could be potentially important for IL-1β-induced 
angiogenesis in cancer [146]. Endothelial cells 
have been thought to be one cellular source for 
CAFs via EMT [147], which has been demon-
strated in  vivo to contribute to cardiac "brosis 
[148]. IL-1β is an important factor to promote 
this process via FGF-2 or other factors [149].

1.3.5  Immune Cells

IL-1β is one of the best-studied cytokines in 
in!ammation and has been known to be one of 
the major cytokines involved in innate immunity 
and in!ammation [2–6]. Activation of IL-1β is 
mostly studied in macrophages under infection or 
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sterile in!ammation [2–6]. Myeloid cells are also 
one of the major producers of IL-1β in tumor 
microenvironment. Among the tumor-associated 
innate immune cells, IL-1β has been shown to 
work on all different cell types and elicit various 
functions. IL-1β is known to recruit and activate 
neutrophils that can either suppress microbiota- 
induced colonic in!ammation and inhibit CRC 
[18] or promote inducible nitric oxide synthase 
(iNOS) production in neutrophils to inhibit CD8 
T-cells in the setting of breast cancer metastasis 
[17]. IL-1β has been shown to induce CCL2 
expression from various cellular sources and 
recruit tumor-associated macrophages and other 
myeloid lineages such as monocytic and granulo-
cytic MDSCs [150]. In turn, these immune cells 
can be the cellular targets of IL-1 signaling to ini-
tiate immunosuppressive and pro-angiogenic sig-
naling during cancer progression. IL-1β is also 
produced by the NLRP3 in!ammasome in a sub-
set of DCs in the presence of necrotic cancer cells 
during cancer progression and/or therapy [151], 
which is important for DC-mediated T-cell acti-
vation and cancer clearance by certain chemo-
therapy. DC-derived IL-1α, in a nontumor setting, 
promotes the proliferation of CD8 T-cells [152]. 
Interestingly, the DC-derived IL-1β activation 
requires a feed-forward mechanism from CD8 
T-cells, in a speci"c antigen-dependent manner 
[153–155]. Likely depending on different cyto-
kine milieu or DC subtypes, IL-1β has been 
shown to balance the presence of tumor- 
associated macrophages or CD11b+ DC [49]. 
Tumors from wild-type animals favor IL-10 pro-
ducing immunosuppressive tumor-associated 
macrophages, whereas tumors from the IL-1β- 
de"cient host have increased CD11b+ DC that 
can mount an antitumor Th1 and CD8 responses 
[150]. Among the innate lymphoid cells (ILCs), 
the role of IL-1  in cancer-associated NK-cells 
(group 1 ILCs) is largely unknown, and earlier 
studies indicate a role of IL-1  in promoting 
NK-cell activity toward tumoricidal effects [156]. 
Further literature supports this notion and found 
that co-treatment of IL-1β and IL-12 enhances 
the production of IFNγ and GM-CSF from a sub-
set of human NK-cells [157]. On the other hand, 
IL-1β is critical to promote the development and 

maintenance of ILC3 cells [158, 159], and IL-1β 
is able to inhibit NK-cells from acquiring IFN-γ 
production and degranulation [158], indicative of 
an IL-1β-dependent suppression of NK effector 
function. IL-1β can also stimulate the activation 
of ILC3 cells that initiates antigen-speci"c CD4 
T-cell responses [160] but also can induce pro-
duction of often pro-tumorigenic cytokines such 
as IL-17A and IL-22. Distinct function of IL-1 
signaling on ILC is yet to be established under 
different cancer contexts.

Among the adaptive immune cells, IL-1 has 
been shown to work on both αβ T-cells and γδ 
T-cells during cancer progression. In the latter, γδ 
T-cells in lung metastasis can be activated by 
IL-1β to express IL-17, a key cytokine that can 
induce G-CSF.  G-CSF and IL-1β collectively 
lead to the successful neutrophil recruitment and 
polarization, which results in the production of 
immunosuppressive iNOS to inhibit CD8 T-cells 
[17]. The direct impact of IL-1 on CD4 T-cells 
was recently established in a CRC model where 
IL-1 signaling promotes a Th17 phenotype and 
potentiates tumor-elicited in!ammation and pro-
gression [18]. This result is in agreement with the 
discovery that IL-1β promotes Th17 lineages 
when combined with IL-6 [161] or with IL-23 
[162–164]. The IL-1β-dependent Th17 commit-
ment could also be due to the alteration of plastic 
Tregs into Th17 [165–167]. In addition, IL-1β 
directly acts on a mixed memory CD4 T-cell pop-
ulation to induce IL-22 production [18, 168]. 
Both IL-17 and IL-22 have been reported to pro-
mote cancer progression in different cancers [18, 
168]. IL-1β and IL-4 have been shown to pro-
mote the differentiation of Th9 cells in the 
absence of TGFβ, resulting in a superior antitu-
mor CD4 Th9 population that is less exhausted 
with cytotoxic gene signatures [169]. In nontu-
mor setting, there are many outstanding cases in 
which IL-1β can enhance antigen-speci"c CD4 
and CD8 T-cell proliferation and activation, as 
well as memory responses of these T-cells, 
mostly likely via direct IL-1β/IL-1R1 signaling 
[170–172].

The various effector cell types dictate a care-
ful evaluation of tumor microenvironment, which 
de"nes the dominant role of IL-1 signaling within 
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the tumor microenvironment. Treating cancers 
with IL-1 antagonists should be carefully evalu-
ated using a comprehensive approach. For exam-
ple, lung cancers or metastasis may bene"t from 
IL-1 inhibition due to the role of IL-1 in recruit-
ing cancer-promoting neutrophils and subsequent 
CD8 suppression. In CRC, however, neutrophils 
are critical to eliminate cancer-penetrating bacte-
ria and thus control the tumor-elicited in!amma-
tion and tumor progression. Another concern is 
how to best use the antitumorigenic role of IL-1 
signaling in DC activation and antigen-speci"c 
CD8 T-cell priming and activation, a process that 
requires DC to sense ATP release from necrotic 
cancer cells and NLRP3 activation. Thus, it 
would likely be detrimental to use IL-1 inhibitors 
under these conditions.

1.4  Clinical Implications 
and Perspectives

1.4.1  Clinical Studies

Due to the complex role of IL-1 signaling in 
immunity and physiology, clinical development 
of IL-1-targeted therapy is mostly related to auto-
immune diseases such as the development of 
anakinra in rheumatoid arthritis and canakinumab 
(IL-1β-speci"c antibody) for several rare in!am-
matory diseases. Recently, the Canakinumab 
Anti-in!ammatory Thrombosis Outcomes Study 
(CANTOS), initially designed to prevent heart 
attack, stroke, or cardiovascular death in patients 
with elevated C-reactive protein using different 
doses of canakinumab, identi"ed a signi"cant 
reduction in lung cancer mortality and risk in the 
cohort receiving canakinumab relative to placebo 
controls (> 50% risk reduction) [173]. This was 
extremely exciting in the "eld of cancer therapy, 
and Novartis immediately followed up with sev-
eral trials to combine canakinumab with chemo-
therapy and immune checkpoint inhibitor in lung 
cancers, including a phase III CANOPY-2 study 
evaluating the ef"cacy and safety of canakinumab 
in combination with docetaxel in non-small cell 
lung cancers (Clinicaltrials.gov Identi"er: 
NCT03626545).

In breast cancer, a pilot trial in HER2-negative 
metastatic breast cancer patients de"nes an 
anakinra-regulated gene signature from the leu-
kocyte transcripts, mostly related to IL-1 family 
(IL-1B, IL-1R1, IL-1R2, IL-1RAP, IL-1RN, 
IL-6, IL-6R), NF-KB signaling (NF-KB2, 
NF-KBIZ), and innate immune sensing (TLR1, 
TLR2, TLR4, TLR5, TLR8, NOD2) molecules. 
The anakinra-regulated signature from blood leu-
kocytes can faithfully predict patient outcome. In 
particular, the gene signature is enriched in the 
aggressive basal-like breast cancer subtype that 
could potentially bene"t from IL-1/IL-1R1- 
targeted therapy [32]. In addition to blocking the 
role of IL-1  in cancer-associated in!ammation, 
anakinra administration in this pilot trial led to 
elevated cytotoxic signatures from NK- or CD8 
T-cells, indicative of activation. This phenome-
non was recently explained using animal models 
where IL-1 blockade leads to increased 
DC-mediated antigen presentation and CD8 
T-cell activation [49], which provides the ratio-
nale to combine immunotherapy in patients with 
TNBC with canakinumab (Clinicaltrials.gov 
Identi"er: NCT03742349).

Bermekimab (MABp1, an IL-1α-speci"c 
monoclonal antibody) was recently used in a 
phase III trial to treat metastatic CRC with pre-
dicted poor outcomes. This study used de"ned 
primary endpoints including lean body mass (sta-
ble or increased body weight) and criteria QLQ- 
C30 (fatigue, pain, and anorexia; at least two of 
these are improved) from European Organisation 
for Research and Treatment of Cancer (EORTC). 
The bermekimab treatment signi"cantly 
increased percentage of patients reaching the pri-
mary endpoints (33% versus 19%) but did not 
increase adverse events relative to placebo con-
trols (23% versus 33%) [174]. In a similar set-
ting, when pretreatment levels of serum IL-1RA 
were taken into account, patients with lower 
baseline IL-1RA levels responded better to ber-
mekimab treatment with increased response rate 
[175]. There was no overall survival bene"t from 
this trial, suggesting that inhibition of IL-1α 
should be intended for improving patient quality 
of life, like cancer-associated cachexia [174, 
175]. One of the advanced phase III trials using 
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bermekimab to treat metastatic CRC was termi-
nated due to inability of the study to reach futility 
boundary of the primary endpoint (Clinicaltrials.
gov Identi"er: NCT01767857).

In addition to these advances in clinical stud-
ies, outstanding literature provides a strong 
rationale to target this pathway for cancer ther-
apy. We have shown that anakinra or IL-1R1 
antibody can inhibit obesity-associated angio-
genesis in breast cancer [50]. Chimeric antigen 
receptor (CAR) T-cell therapy targeting CD19 
has been an outstanding approach for refractory 
B cell malignancies but commonly associated 
with severe cytokine storms. Anakinra can ame-
liorate the severe adverse effect [176] and is 
worthwhile to explore its role in CAR T-cell-
treated patients. IL-1β has been shown to induce 
antigen presentation from DC and induce can-
cer-antigen-speci"c priming of CD8 T-cells, 
which indicates a role of IL-1β in chronic activa-
tion of CD8 T-cells in tumor microenvironment 
and provides a rationale to combine IL-1 inhibi-
tion with immune checkpoint blockage during 
cancer therapy [49].

1.4.2  Consideration for Clinical 
Studies

It is important to use caution for human clinical 
studies. For example, IL-1 signaling has been 
shown to inhibit mammary tumor growth and 
metastasis in luminal type of breast cancer [55] 
associated with “cold” immune microenviron-
ment that is unresponsive to immune checkpoint 
blockage [177, 178]. IL-1α inhibits the conver-
sion of papilloma to carcinoma in skin cancer 
[107]. There are also occasional reports that IL-1 
treatment can inhibit cancer cell growth in vitro 
from various cancer types [19, 20, 33, 34, 179, 
180] that may not be the best cancer types to tar-
get IL-1 signaling pathway for therapy. In addi-
tion, there are some controversial results related 
to the role of IL-1β in DC activation/T-cell prim-
ing. Earlier reports have shown that DC can 
receive ATP from dying tumor cells via the P2X7 
purinergic receptors, leading to the activation of 
NLRP3 in!ammasome and downstream IL-1β 

processing and secretion. IL-1β, in turn, propa-
gates the signal from DCs to prime CD8+ T-cells 
and induces IFNγ for cancer cell killing. This 
process is critical to mediate chemotherapy- 
induced cancer cell killing in an adaptive 
immune-dependent manner. In breast cancer 
patients with loss-of-function mutations in P2X7, 
that is, unable to activate NLRP3 in!ammasome, 
doxorubicin treatment leads to faster metastasis 
and resistance to treatment [151]. This is further 
supported by another study showing that IL-1β is 
critical to mediate the ef"cacy of doxorubicin 
treatment in an adaptive immune-dependent 
manner [181]. The disagreement on the role of 
IL-1β in DC activation and CD8 T-cell priming 
[49, 151, 181] warrants careful evaluation of DC 
subtypes within tumor microenvironment and 
draining lymph nodes. IL-1RA, produced by 
CD11b  +  Gr-1+ myeloid cells, can antagonize 
senescence in cancer and promote PTEN-loss- 
mediated cancer initiation [182]. Many antican-
cer drugs that induce senescence of cancer cells 
also increase IL-1 production as summarized in a 
recent outstanding review article [183]. The deci-
sion to combine IL-1 inhibition and other therapy 
requires further understanding of the tumor 
immune microenvironment including the major 
immune cell subtypes, role of IL-1 on these 
immune cells, and the nature of therapeutic 
agents to be used.

1.4.3  Using Publicly Available 
Genetic Information 
for Assessing the Role of IL-1 
Signaling in Cancer 
Progression

Among the Cancer Genome Atlas (TCGA) Pan- 
Cancer data across 30 cancer types, we analyzed 
the correlation between mRNA expression of 
IL-1α, IL-1β, IL-1R1, and IL-1RA and overall 
survival. Due to the inef"ciency of IL-1 signaling 
in eradicating tumors from most preclinical 
research, targeting IL-1 pathways should only be 
considered to facilitate other established thera-
peutics. We found some very interesting informa-
tion and summarized here (Fig. 1.2):
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IL-1R1, the major mediator of IL-1 signaling, is 
mostly correlated with poor overall prognosis 
(11/30 versus 4/30). Since most TCGA speci-
mens have very restricted cancer cell content 
(e.g., BRCA specimens should have at least 
80% carcinoma cells) [184], it is presumably 
that most IL-1R1 mRNA comes from cancer 
cells and mediates cancer progression via 
cancer- cell-intrinsic mechanisms.

IL-1RA, the antagonist for IL-1 ligands, is cor-
related with poor prognosis in six cancers, among 
which "ve are shared with IL-1R1 group. This 
suggests that IL-1 signaling activation often 

induces a negative feedback by turning on 
IL-1RA [7, 8].

Two cancer types (kidney renal clear cell carci-
noma, KIRC, and low-grade glioma, LGG) 
exhibit a correlation between poor prognosis 
and mRNAs of all four factors, suggesting that 
IL-1 signaling may play a critical role in dis-
ease progression and could be targeted in 
these cancers. In particular, KIRC is known to 
have relatively low mutational burden but 
responds to immune checkpoint therapy [185]. 
A combination of anakinra and immune 
checkpoint blockage to inhibit both IL-1α and 

Fig. 1.2 The use of TCGA data to predict the correlation between mRNAs from IL-1 pathway and prognosis
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IL-1β may be a better choice to treat KIRC 
patients by alteration of immunosuppressive 
microenvironment as well as inhibition of 
cancer growth [186, 187].

Two cancer types (uveal melanoma, UVM, and 
thymoma, THYM) exhibit a correlation 
between poor prognosis and mRNAs of IL-1β, 
IL-1R1, and IL-1RA, not IL-1α. Using IL-1β- 
speci"c antibody such as canakinumab could 
be a choice to boost immunotherapy and leave 
IL-1α-mediated immune surveillance arm 
intact.

Pancreatic adenocarcinoma (PAAD), a known 
immune-cold cancer type, is a dif"cult cancer 
to treat and shows elevated mRNA levels of 
IL-1α, IL-1R1, and IL-1RA, not IL-1β, among 
the patient specimens with poor prognosis. 
Literature has shown that cancer cell-derived 
IL-1α is critical for cancer cell adhesion [188], 
growth [189], and Treg cell in"ltration [190]. 
These patients may bene"t from IL-1α- speci"c 
treatment such as using bermekimab (MABp1) 
in combination with other therapies.

Both IL-1α and IL-1β are correlated with poor 
prognosis in cervical squamous cell carci-
noma/endocervical adenocarcinoma (CESC) 
and lung squamous cell carcinoma (LUSC), 
supporting a role of common IL-1R1 signal-
ing in squamous cell carcinomas that may 
bene"t from anakinra co-treatment. The 
CANTO trial did not have enough non-small 
cell lung squamous cell carcinoma (LUSC) 
patients to determine if canakinumab reduces 
the risk of LUSC [173].

IL-1α, but not IL-1β, is correlated with poor 
prognosis in lung adenocarcinoma (LUAD), 
suggesting the role of IL-1α in promoting can-
cer progression in lung adenocarcinoma. 
Considering the role of canakinumab (IL-1β) 
in reducing LUAD risk and prolonging patient 
survival, the clinical trial mentioned above 
(Clinicaltrials.gov Identi"er: NCT03626545) 
may bene"t from comparing anakinra and 
canakinumab in non-small cell lung cancer 
patients.

Please note the above data are based on mRNA 
expression and the information provided 
above is by no means the guide on how to 

design clinical research and how to choose target 
patient populations. All known literature 
should be comprehensively analyzed to justify 
the most rational design for human studies. 
There are also many other drugs targeting 
IL-1 signaling transduction, including FDA- 
approved rilonacept (a soluble decoy receptor 
for neutralizing both IL-1 ligands) and others 
in development such as gevokizumab and 
LY2189102 (anti-IL-1β), AMG 108 (anti-IL-
 1R1), and AX-765 (long-lasting Casp-1 inhib-
itor). These agents are potential drugs to be 
repurposed for cancer therapy [191].
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