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SUMMARY
IkB kinase a (IKKa) activity is required for ErbB2-induced mammary tumorigenesis. Here, we show that IKKa
and its activator, NF-kB-inducing kinase (NIK), support the expansion of tumor-initiating cells (TICs) that cop-
urify with a CD24medCD49fhi population from premalignant ErbB2-expressing mammary glands. Upon acti-
vation, IKKa enters the nucleus, phosphorylates the cyclin-dependent kinase (CDK) inhibitor p27/Kip1,
and stimulates its nuclear export or exclusion. Reduced p27 expression rescues mammary tumorigenesis
in mice deficient in IKKa kinase activity and restores TIC self-renewal. IKKa is also likely to be involved in
human breast cancer, where its expression shows an inverse correlation with metastasis-free survival, and
its presence in the nucleus of invasive ductal carcinomas (IDCs) is associated with decreased nuclear p27
abundance.
INTRODUCTION

Breast cancer (BCa), the leading cause of cancer deaths in

women (Jemal et al., 2011), can be classified into Luminal A,

Luminal B, ERBB2/HER2 positive, triple-negative, and normal

types based on estrogen receptor (ER), progesterone receptor

(PR), and ERBB2 expression. Genomic amplification of the

ERBB2 locus and/or overexpression of its product occur in

20%–30% of BCa and correlate with poor prognosis (Borg

et al., 1989). Trastuzumab, a humanized monoclonal ERBB2

antibody, is effective in treating ERBB2-postitive BCa. However,

most patients develop resistance to such drugs, necessitating

identification of new therapeutic strategies that target tumor

and metastasis initiating cells.

The tumor-initiating cells (TICs) of ERBB2-induced breast and

mammary cancers remain elusive. Within normal and lactating
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mammary glands, the mouse mammary epithelium consists

of CD24hiCD49floCD29lo lineage-free (L-) luminal cells,

CD24medCD49f+CD29hiL- basal cells, and alveolar cells

(Shackleton et al., 2006; Stingl et al., 2006). Luminal epithelial

cells comprise CD61+ luminal progenitors and CD61- mature

luminal cells (Asselin-Labat et al., 2007), whereas basal epithelial

cells include CD24medCD49fhi cells that are enriched for mam-

mary stem cells (MaSC) and CD24medCD49flo myoepithelial cells

(Shackleton et al., 2006; Stingl et al., 2006). ErbB2-induced

mammary cancer was suggested to be initiated by a subpopula-

tion of parity-identified mammary epithelial cells (PI-MECs)

within CD24hiCD49floL- luminal cells, whose proliferation is

driven by cyclin D1. CD24medCD49f+L- basal cells that are en-

riched for MaSCs, however, are not regulated by cyclin D1 (Je-

selsohn et al., 2010). Ablation of cyclin D1 in the mammary

epithelium retards lobuloalveolar development during
gulator of ErbB2-inducedmammary tumorigenesis by virtue
ereby supporting the proliferation and expansion of TICs.
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pregnancy and causes defective lactation (Fantl et al., 1995). A

similar phenotype is exhibited by females homozygous for an

IkkaAA knockin allele, in which IkB kinase a (IKKa) activation is

prevented by replacement of activation loop serines with ala-

nines (Cao et al., 2001). Furthermore, IKKa activity is required

for induction of cyclin D1 upon engagement of receptor activator

of NF-kB (RANK) during pregnancy (Cao et al., 2001). RANK acti-

vation by RANK ligand (RANKL) produced by PR+ luminal cells

drives progesterone-induced basal MaSC expansion (Asselin-

Labat et al., 2010; Joshi et al., 2010) and mammary tumorigen-

esis (Gonzalez-Suarez et al., 2010; Schramek et al., 2010). How-

ever, in the absence of progesterone, RANKL is produced by

tumor-infiltrating FoxP3+ T cells that cause the IKKa-dependent

metastatic spread of mammary cancer cells (Tan et al., 2011).

Enhanced RANK expression is also associated with increased

metastasis in human BCa (Palafox et al., 2012). MMTV-Erbb2-

mice that are homozygote for the IkkaAA allele exhibit delayed

tumorigenesis, due to defective TIC self-renewal, but this defect

appears to be cyclin D1 independent (Cao et al., 2007).

Besides cyclin D1, other regulators of G1-S phase transition,

including CDK2 (Ray et al., 2011), CDK4 (Yu et al., 2006), and

p27/Kip1 (Hulit et al., 2006; Muraoka et al., 2002), also partici-

pate in ErbB2-induced mammary tumorigenesis. p27 binds

cyclin E/A:CDK2 complexes to inhibit G1-S transition (Lu and

Hunter, 2010). Kip1 is a haploinsufficient suppressor of ErbB2-

induced mammary tumorigenesis;MMTV-Erbb2/Kip1+/� female

mice develop mammary tumors earlier than MMTV-Erbb2/

Kip1+/+ mice, but complete Kip1 deficiency prevents ErbB2-

induced mammary tumorigenesis (Muraoka et al., 2002). Kip1

is rarely inactivated in human cancers, although reduced p27

expression (Catzavelos et al., 1997; Porter et al., 1997) and nu-

clear exclusion (Shin et al., 2002; Viglietto et al., 2002) correlate

with poor prognosis. Tumor promotion by decreased p27-medi-

ated cyclin-dependent kinase (CDK) inhibition may be due to

expansion of stem/progenitor cells (Besson et al., 2007), consis-

tent with observations that p27 plays an important role in self-

renewal of human embryonic stem cells (Menchón et al.,

2011). Several protein kinases that phosphorylate p27 and

induce its nuclear export were previously described (Lu and

Hunter, 2010).

Our previous study demonstrates that inactivation of IKKa led

to lowered incidence and delayed onset, but not complete

inhibition, of mammary tumorigenesis (Cao et al., 2007) in

MMTV-ErbB2 Tg mice, suggesting ErbB2-induced mammary

tumorigenesis may originate from IKKa-dependent and IKKa-in-

dependent TICs. In our current study, we aim to identify TICs for

ErbB2-induced mammary tumorigenesis and also examine the

role of IKKa and its related signaling pathway in regulating mam-

mary TICs.

RESULTS

ErbB2-Induced TICs Form Luminal Mammary Tumors
We dissociated preneoplastic mammary glands from 5-month-

old MMTV-Erbb2 mice (Guy et al., 1992), an age at which no

visible tumors were detected by whole-mount mammary gland

analysis (Figure S1A available online). Freshly sorted epithelial

subpopulations, including enriched CD24medCD49fhi MaSC

(P5), CD24medCD49flo mature myoepithelial cells (P6) (Shackle-
648 Cancer Cell 23, 647–659, May 13, 2013 ª2013 Elsevier Inc.
ton et al., 2006; Stingl et al., 2006), CD24hiCD49floCD61- mature

luminal cells (P7), and CD24hiCD49floCD61+ luminal progenitors

(P8) (Asselin-Labat et al., 2007), that contained more than 90%

TER119-/CD31- cells, among which the P5+P6 basal population

was 87% positive for cytokeratin 5 (CK5) and the P7+P8 luminal

cells were 98% positive for CK8 (Figure 1A; Figures S1B and

S1C), were orthotopically transplanted into the #2 mammary

fat pads of Rag1�/� FVB/N females. Palpable tumors were de-

tected after 2–3 months in 90%–100% of mice transplanted

with MaSCs and after 3 months in 60% of mice that received

luminal progenitors (Figures 1B and 1C). Surprisingly, myoepi-

thelial cells also formed tumors in 50%and 90%of the recipients

after 2 or 3 months, respectively, but nearly no tumors appeared

in mice transplanted with mature luminal cells (Figures 1B and

1C). MaSCs and myoepithelial cells did not exhibit a significant

difference in tumorigenecity, but tumors derived from MaSCs

or myoepithelial cells were significantly larger than those derived

from luminal progenitors (Figure 1C). Regardless of their origin,

all tumors closely resembled spontaneous tumors from MMTV-

Erbb2 females in histology and were of the luminal type because

they expressed the luminal marker cytokeratin 18 (CK18) and not

the basal cell marker CK5 (Figure 1D). Thus, even MaSC and

mature myoepithelial cells, which express basal cell markers,

seem to generate luminal-type tumors. To further characterize

the differentiation potential of MMTV-ErbB2 basal cells and

luminal progenitors, we cultured the cells in matrigel. Whereas

basal cells formed large spheroids, luminal progenitors formed

fewer spheroids and also formed alveolar structures that were

not observed in the basal cell cultures (Figures S1D).

IKKa and NIK Promote Basal Cell Expansion
and Mammary Tumorigenesis
IKKa is a critical mediator of ErbB2-, but not Wnt- or Ras-

induced, mammary tumorigenesis, and its activity is required

for TIC self-renewal (Cao et al., 2007). Similar results were ob-

tained using the immortalized ErbB2-induced mammary cancer

cell line MT2 (Tan et al., 2011). To identify cellular targets depen-

dent on IKKa, we analyzed preneoplastic mammary glands of 5-

month-old MMTV-Erbb2/IkkaAA/+ and MMTV-Erbb2/IkkaAA/AA

females by flow cytometry of enriched Ter119-CD45-CD31- (L-)

mammary epithelial cells (Figure S1E). IKKa inactivation mark-

edly decreased the CD24medCD49f+L- basal cell population,

whereas there was no significant change in the CD24hiCD49floL-

total luminal population and a marginal change in CD24hi

CD49floCD61+L- luminal progenitors (Figure S1F). Correspond-

ingly, IKKa inactivation prevented spheroid formation by basal

cells but had little effect, if any, on spheroid formation by luminal

progenitors, although it did reduce their ability to form alveolar

structures (Figure S1D). MMTV-Erbb2/IkkaAA/AA mammary

glands contained a single layer of CK5+ basal cells but were

devoid of p63-positive basal cells and nuclear IKKa-positive

cells (Figure S1G), suggesting a heterogeneity of the basal cell

population. This effect of IKKa inactivation on basal cell number

was absent in FVB/N virgins not carrying theMMTV-Erbb2 trans-

gene (data not shown), explaining why virgin IkkaAA/AA females

do not exhibit mammary gland defects (Cao et al., 2001). Thus,

IKKa is involved in mammary cell proliferation only in response

to pregnancy-associated signals, such as RANKL (Asselin-Labat

et al., 2010), or upon elevated ErbB2 activity.



Figure 1. Cellular Origins of ErbB2-Induced Mammary Cancer

(A) Flow cytometry and cell-sorting procedures used to identify the cellular origins of ErbB2-induced mammary cancer.

(B) Mammary tumor incidence 2 and 3 months after orthotopic transplantation of 53 104 cells from the indicated sorted populations (n = 10 each for Erbb2/WT

cells; n = 5 each for Erbb2/IkkaAA/AA cells).

(C) Tumor volumes at 3 months after transplantation as in (B).

(D) Immunohistochemical analysis of spontaneousErbb2-induced tumors and tumors generated by transplanted cells. MaSC,mammary stem cells; Myo,mature

myoepithelial cells; LP, luminal progenitors; LC, mature luminal epithelial cells; CK5, cytokeratin 5; CK18, cytokeratin 18. See also Figure S1.
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We also transplanted purified MaSCs, mature myoepithelial

cells, luminal progenitors, and mature luminal cells from

MMTV-Erbb2/IkkaAA/AA females into mammary fat pads of

Rag1�/� females (Figure 1B). Consistent with a requirement for

IKKa activity in basal cell maintenance, MaSCs or mature myoe-

pithelial cells from MMTV-Erbb2/IkkaAA/AA mice did not give rise

to tumors (Figure 1B). In contrast, MMTV-Erbb2/IkkaAA/AA

luminal progenitors retained tumorigenic potential and gave

rise to tumors in 40% and 60% of recipients after 2 or 3 months,

respectively (Figures 1B and 1C). These results suggest that

IKKa kinase activity is critical for maintaining basal TICs but is

dispensable for expansion of luminal progenitors.
To examine the role of the IKKa-activating kinase NF-kB-

inducing kinase (NIK) (Senftleben et al., 2001), we backcrossed

C57B/6 Nik�/� mice to the FVB/N background for eight genera-

tions and crossed the offspringwith FVB/NMMTV-Erbb2mice to

generate MMTV-Erbb2/Nik+/+, MMTV-Erbb2/Nik+/�, or MMTV-

Erbb2/Nik�/� females. Nik ablation dramatically reduced the

number of preneoplastic mammary gland lesions (Figure 2A)

and the number of Ki67-positive mammary epithelial cells (Fig-

ures S2A and S2B). Nik ablation also reduced the

CD24medCD49f+L- and CK5+ basal cell populations, while having

little effect, if any, on the CD24hiCD49floL- luminal cell population

(Figures 2B and 2C; Figure S2C). MMTV-Erbb2/Nik�/� females
Cancer Cell 23, 647–659, May 13, 2013 ª2013 Elsevier Inc. 649



Figure 2. NIK Is Required for ErbB2-Induced Mammary Tumorigenesis and TIC Self-Renewal

(A) Stained whole mounts of preneoplastic mammary glands from 5-month-old MMTV-Erbb2/Nik+/+ and MMTV-Erbb2/Nik�/� females.

(B) Flow cytometry of CD45-, CD31-, and Ter119- (lineage-negative, L-) epithelial cells from preneoplastic mammary glands of the indicated mice.

(C) Quantitation of cell numbers (left panel) and percentages (right panel) of different mammary epithelial cell populations from (B). Mean ± SEM (n = 4).

(D) Occurrence of mammary tumors in MMTV-Erbb2/Nik+/+ or MMTV-Erbb2/Nik+/� (n = 23) and MMTV-Erbb2/Nik�/� (n = 21) females.

(E) Volumes of secondary tumors formed by CD45-, CD31-, Ter119-, and CD140a- (L-) tumor cells of the indicated Nik genotypes. Data represent mean ± SEM

(n = 4).

(F) Left panels: primary L- mammary tumor cells from indicatedmice were grown asmammospheres. Right panels: secondarymammosphere formation by single

cell suspensions derived from primary mammospheres of the indicated genotypes.

(G) Quantitation of sphere numbers from (F). Mean ± SEM (n = 6–9). (C), (D), (E), and (G): exact p values are indicated in the panels. See also Figure S2.
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exhibited delayed tumor onset relative toMMTV-Erbb2/Nik+/+ or

MMTV-Erbb2/Nik+/� females (Figure 2D). By 8 months of age,

only 20%MMTV-Erbb2/Nik�/� females developedmammary tu-

mors, whereas 90% of the MMTV-Erbb2/Nik+/+ and MMTV-

Erbb2/Nik+/� cohorts exhibited mammary tumors. Notably,

Nik�/� mice in the FVB/N genetic background developed multi-

organ granulocytic infiltration and died between 5 to 9 months

(data not shown), thus excluding long-term analysis. To circum-

vent this complication, we isolated primary epithelial cells from

mammary tumors of MMTV-Erbb2/Nik�/� and MMTV-Erbb2/

Nik+/+ littermate females and transplanted them into FVB/N
650 Cancer Cell 23, 647–659, May 13, 2013 ª2013 Elsevier Inc.
mammary glands. NIK-deficient cancer cells exhibited markedly

reduced tumorigenic potential (Figure 2E) and formed smaller

and fewer mammospheres relative to NIK-expressing cells and

failed to form secondary mammospheres after passage (Figures

2F and 2G). Likewise, NIK-deficient primary tumors gave rise to

fewer secondary tumors and almost no tertiary tumors by com-

parison to NIK-expressing tumors (Figure S2D). We also exam-

ined the frequency of TICs in MMTV-Erbb2/Nik+/+ and MMTV-

Erbb2/Nik�/� tumors using serial dilution. As few as 100

MMTV-Erbb2/Nik+/+ primary cancer cells formed tumors in

transplanted mice, but it took 104–105 MMTV-Erbb2/Nik�/�



Figure 3. IKKa Controls the Subcellular Localization of p27

(A) IKKa controls nuclear p27 in mammary tumors. Mammary tumors were formed by MT2 cells expressing either control or IKKa shRNAs. Cytoplasmic and

nuclear fractions were prepared from three individual tumors of each group and analyzed by immunoblotting with the indicated antibodies.

(B) L- primary mammary tumor cells were isolated from the indicated mice and incubated with MG132, a proteasome inhibitor, for 6 hr. Cytoplasmic and nuclear

fractions were prepared, separated by SDS-PAGE, and immunoblotted with the indicated antibodies.

(C) Overexpression of IKKa in MCF7 cells decreases nuclear p27 accumulation. MCF7 cells were transfected with increasing amounts of an IKKa expression

vector (0–2 mg per plate). After 36 hr, nuclear and cytoplasmic fractions were analyzed by immunoblotting.

(D) NIK and IKKa do not affect p27 turnover. L- mammary tumor cells from the indicated mice or MT2 cells expressing control or IKKa shRNA were treated with

cycloheximide (CHX) for the indicated times (hr). Gel-separated cell lysates were immunoblotted with the indicated antibodies. See also Figure S3.
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cancer cells to form an equivalent number of tumors (Figure S2E).

NIK was required for activation and nuclear translocation of IKKa

(Figures S2F and S2G).

The NIK-IKKa Module Induces p27 Nuclear Exclusion
IKKa controls expansion of lobuloalveolar cells during preg-

nancy through its effect on cyclin D1 expression, and an

MMTV-cyclin D1 transgene rescues the lactation defect caused

by IKKa inactivation (Cao et al., 2001). However, when we

compared cyclin D1 expression in lysates of MMTV-Erbb2/

Ikka+/+ or MMTV-Erbb2/IkkaAA/AA mammary cancer cells, we

failed to detect significant differences (Cao et al., 2007). Cyclin

D1 and its associated kinase activity, as well as other proteins

involved in cell cycle and apoptosis, including p16, p19, E2F1,

and Bcl2, were also not significantly altered upon IKKa silencing

inMT2 cells (Figures S3A andS3B). Interestingly, the presence of

nuclear cyclin D1was partially correlated with Ki67 nuclear stain-

ing in tumors fromMMTV-Erbb2/Ikka+/+ female mice, but no sig-

nificant correlation was between the two was found in MMTV-

Erbb2/IkkaAA/AA tumors or in preneoplastic mammary glands of
either MMTV-Erbb2/Ikka+/+ or MMTV-Erbb2/IkkaAA/AA females

(Figure S3C), suggesting that cyclin D1 may be dispensable for

expansion of basal TICs. Skp2, whose messenger RNA

(mRNA) expression was reported to be controlled by IKKa-medi-

ated NF-kB activation (Schneider et al., 2006), was also not

altered in tumors from IKKa-silenced cells (Figure S3D). How-

ever, the total amount of p27 was occasionally elevated in

some of the tumors derived from IKKa-silenced cells. Although

this effect was variable, further analysis revealed that the amount

of nuclear p27, a negative regulator of G1-S cell-cycle transition

and ErbB2-induced mammary tumorigenesis (Muraoka et al.,

2002), was consistently elevated in IKKa-silenced MT2 cells,

whereas cytoplasmic p27 was barely affected (Figure 3A). We

also purified L- primary cancer cells from Erbb2/Nik+/+ and

Erbb2/Nik�/� tumors and treated them with the proteasome in-

hibitor MG-132 to prevent constitutive NIK turnover. This re-

sulted in NIK accumulation and enhanced IKKa nuclear translo-

cation in MMTV-Erbb2/Nik+/+ cells, as well as reduced nuclear

p27 (Figure 3B). p27 levels were higher in MMTV-Erbb2/Nik�/�

cells regardless of MG-132 treatment. We also found that
Cancer Cell 23, 647–659, May 13, 2013 ª2013 Elsevier Inc. 651
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spontaneous ErbB2-induced tumors contained many cells with

nuclear IKKa, and in most of these cells, p27 was excluded

from the nucleus (Figure S3E). These results suggest that the

NIK-IKKamodule is a negative regulator of nuclear p27 accumu-

lation. Reduced nuclear p27 was also found in MCF7 human

breast cancer cells that were transiently transfected with an

IKKa expression vector; increased IKKa expression resulted in

a dose-dependent decrease in nuclear p27 and increased cyto-

plasmic p27 (Figure 3C). Silencing of IKKa expression inMCF7 or

T47D cells led to nuclear accumulation of p27, without signifi-

cantly influencing IKKb expression and nuclear RelA/p65 (Fig-

ure S3F). Notably, neither NIK nor IKKa had an effect on the turn-

over of p27 (Figure 3D).

IKKa Phosphorylates p27 and Promotes Its Nuclear
Exclusion
To examine if p27 is a substrate for IKKa, we carried out an

in vitro kinase assay. IKKa purified from baculovirus-infected in-

sect cells phosphorylated p27 better than IkBa, the original IKKa

substrate (Figure 4A). Endogenous IKKa fromRANKL-stimulated

mammary cancer cells, whose activation was NIK-dependent,

also phosphorylated p27 (Figure 4B). Only the nuclear form of

IKKa from RANKL-stimulated cells phosphorylated p27,

whereas the cytoplasmic form was inactive (Figure 4C). IKKa ki-

nase activity was required for p27 phosphorylation as only

immunoprecipitated constitutively active IKKa(EE), in which acti-

vation loop serines were replaced with glutamates, phosphory-

lated p27, whereas kinase-dead IKKa(K/A) or inactive IKKa(AA)

mutants failed to do so (Figure 4D).

To determine if endogenous p27 is phosphorylated by IKKa,

MT2 cells transduced with control or IKKa small hairpin RNAs

(shRNAs) were labeled with 32P-orthophosphate in the presence

or absence of the nuclear export inhibitor leptomycin B (LMB).

Neither IKKa expression nor LMB treatment affected phosphor-

ylation of cytoplasmic p27, but LMB treatment enhanced nuclear

p27 phosphorylation in control cells, but not in IKKa-silenced

cells (Figures 4E and S4A). Mass spectrometric analysis of p27

that was phosphorylated in vitro by IKKa indicated that the

main phosphoacceptors were four serines (S) and one threonine

(T): S12, T42, S175, S178, and S183 (Figure S4B). The se-

quences around these phosphoacceptor sites exhibit similarity

to known and consensus IKK phosphorylation sites (Figure S4C)

and are conserved across mammalian species (Figure S4D).

Alignment of p21/Cip1 and p57/Kip2 with the p27 sequence re-

vealed that T42 and S183 are also conserved in p57/Kip2, but

not in p21 (data not shown). Replacement of S175 and S183

with alanines reduced the extent of IKKa-mediated p27 phos-

phorylation (Figure S4E). Wild-type (WT) p27 and the S175A

and S183A mutants were in vitro phosphorylated by IKKa and

subjected to two-dimensional tryptic phosphopeptide mapping.

Replacement of either S175 or S183, which are located within a

single tryptic peptide (Figure S4B, blue color), with alanines

reduced the phosphorylation of the corresponding peptide (Fig-

ure S4F). We also detected p27 phosphorylation at S175 and

S183 using phospho-S175- or phospho-S183-specific anti-

bodies. Interestingly, whereas the S183A mutation had no effect

on S175 phosphorylation, the S175A substitution affected S183

phosphorylation by recombinant IKKa, suggesting that p27 may

be sequentially phosphorylated, at least in vitro (Figure 4F). How-
652 Cancer Cell 23, 647–659, May 13, 2013 ª2013 Elsevier Inc.
ever, in MDA-MB-231 breast cancer cells, IKKa silencing

reduced S183 phosphorylation, while having no significant effect

on S175 phosphorylation (Figure S4G). Although phosphoryla-

tion of endogenous p27 at S183 was barely detectable, IKKa

silencing caused increased nuclear accumulation of endoge-

nous p27 and a significant reduction in both cytoplasmic and nu-

clear S183 phosphorylation of transiently expressed exogenous

p27 in ErbB2-positive SKBR3 cells (Figure 4G). Overexpression

of activated IKKa(EE), but not inactive IKKa(AA), induced S183

phosphorylation in breast cancer cells that was abolished by

the S183A mutation, but not by the S175A mutation (Figure 4H).

Consistent with a role for IKKa in regulating p27 subcellular local-

ization, silencing of IKKa in MDA-MD-231 or MT2 cells reduced

CDK2 kinase activity measured with p27 as a substrate (Fig-

ure S4H) and overexpression of IKKa(EE), but not IKKa(AA),

increased CDK2 kinase activity (Figure S4I). We examined the ef-

fect of the two mutations on the nuclear localization of p27 and

found that the S183A substitution enhanced p27 nuclear locali-

zation in human BCa cells, whereas a phosphomimetic S183E

substitution interfered with nuclear localization (Figures 4I and

S4J–S4L). Ectopic expression of different p27 variants had no ef-

fect on the subcellular localization of endogenous p27 (Figures 4I

and S4L). Consistent with these observations, IKKa silencing re-

sulted in decreased cell proliferation as indicated by fewer cells

at the S/G2/M phases (Figure S4M) or fewer BrdU-positive cells

in MT2-generated tumors (Figure S4N). These data suggest that

IKKa-mediated phosphorylation promotes the nuclear export of

p27, resulting in enhanced CDK2 activity.

Reduced p27 Expression Restores Basal Cell Expansion
and Tumorigenesis in IkkaAA/AA Mice
Kip1 is a haploinsufficient suppressor of ErbB2-induced mam-

mary tumorigenesis (Muraoka et al., 2002). To evaluate the effect

of reduced Kip1 dosage on ErbB2-stimulated basal cell expan-

sion, we crossedMMTV-Erbb2mice with Kip1+/� mice. The pre-

neoplastic mammary glands of 4-month-old MMTV-Erbb2/

Kip1+/� mice contained more pronounced side and terminal

buds than those of MMTV-Erbb2/Kip1+/+ mice, but there were

hardly any differences in appearance of Kip1+/� and Kip1+/+

mammary glands without the MMTV-Erbb2 transgene (Fig-

ure S5A). Flow cytometry revealed more CD24medCD49f+L-

basal cells in mammary glands of MMTV-Erbb2/Kip1+/� mice

(Figures S5B and S5C). To place p27 as a downstream effector

of the NIK-IKKa module, we generated MMTV-Erbb2/IkkaAA/+/

Kip1+/+,MMTV-Erbb2/IkkaAA/+/Kip1+/�,MMTV-Erbb2/IkkaAA/AA/

Kip1+/+, andMMTV-Erbb2/IkkaAA/AA/Kip1+/� mice. As described

above, reduced Kip1 dosage enhanced mammary ductal

branching and expansion (Figure 5A). The mammary glands of

5-month-oldMMTV-Erbb2/IkkaAA/AA females were nearly devoid

of side and terminal buds relative to MMTV-Erbb2/IkkaAA/+ fe-

males, but this defect was reversed upon deletion of one Kip1

allele (Figure 5A). IKKa inactivation reduced the number of

CD24medCD49f+L- (Figures 5B and 5C) and CK5-positive (Fig-

ures 5D and S5D) basal cells in MMTV-Erbb2 mammary glands

without significantly affecting the number of CD24hiCD49flo L-

(Figures 5B and 5C) and CK18-positive luminal cells (Figures

5D and S5D). All of these defects were reversed by monoallelic

Kip1 deletion (Figures 5B–5D and S5D). These data suggest

that IKKa and p27 function in the same pathway to regulate basal



Figure 4. p27 Is a Direct Substrate for Nuclear IKKa

(A) In vitro kinase assays using GST-IKKa purified from insect cells and HIS-p27 or HIS-IkBa purified from Escherichia coli.

(B) In vitro kinase assays using endogenous IKKa immunoprecipitated from control or IKKa-silenced MT2 cells or primary mammary tumor cells of the indicated

genotypes incubated with or without RANKL for 2 hr.

(C) Nuclear IKKa is a potent p27 kinase. MT2 cells were treated with or without RANKL. After 2 hr, cytoplasmic and nuclear lysates were immunoprecipitated with

an IKKa antibody. The immune complexes were incubated with HIS-p27, and kinase reactions were conducted.

(D) HEK293T cells were transiently transfected with vectors encoding HA-tagged kinase dead (K/A), inactive (AA), or activated (EE) IKKa. Thirty-six hours later,

lysates were prepared and immunoprecipitated with HA antibody. Immunecomplex kinase assays with HIS-p27 were performed as above.

(E) 32P metabolic labeling of MT2 cells expressing control or IKKa shRNA with or without leptomycin B (LMB) treatment. After 4 hr, endogenous p27 was

immunoprecipitated, separated by SDS-PAGE, and autoradiographed.

(F) Kinase assays using purified GST-IKKa and HIS-p27 or the indicated p27 mutants. Kinase reactions were separated by SDS-PAGE and immunoblotted with

the indicated antibodies.

(G) SKBR3 cells expressing control (+) or IKKa (�) shRNAs were transiently transfected with YFP-p27 (exo) or left untransfected (endo) for 16 hr. Cytoplasmic and

nuclear lysates were separated by SDS-PAGE and immunoblotted with the indicated antibodies.

(H) SKBR3 cells were transiently transfected with vectors encoding the indicated p27 variants, together with IKKa(AA) or IKKa(EE) expression vectors. After 36 hr,

cell lysates were gel analyzed by immunoblotting.

(I) S183 phosphorylation regulates p27 nuclear accumulation. SKBR3 cells were transiently transfected with the indicated p27 variants. After 36 hr, cytoplasmic

and nuclear lysates were prepared and analyzed by immunoblotting. See also Figure S4.
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cell expansion. Inactivation of IKKa also inhibited the prolifera-

tion of mammary epithelial cells assessed by Ki67 staining (Fig-

ures S5E and S5F). This defect was also reversed by ablation
of one Kip1 allele (Figures S5E and S5F). We examined the

self-renewal ability of L- TICs isolated from tumors of the above

four genotypes using the mammosphere formation assay.
Cancer Cell 23, 647–659, May 13, 2013 ª2013 Elsevier Inc. 653



Figure 5. Reduced p27 Expression Rescues Proliferation and Tumorigenic Defects Caused by IKKa Inactivation

(A) Preneoplastic mammary glands of 5-month-old MMTV-Erbb2 females of the indicated genotypes were subjected to whole-mount analysis.

(B) Flow cytometric analysis of L- mammary epithelial cells from preneoplastic mammary glands of 5-month-old females of the indicated genotypes.

(C) Quantitation of the different cell populations analyzed in (B).

(D) Quantitation of CK5- and CK18-positive L- mammary epithelial cells in preneoplastic mammary glands from 5-month-old females of the indicated genotypes.

Mean ± SEM (n = 3).

(E) Quantitation of mammosphere numbers formed by L- mammary cancer cells of the indicated genotypes or by trypsinized primary mammospheres. Mean ±

SEM (n = 4–6).

(F) MT2 cells infected with lentiviruses expressing control, IKKa, or IKKa+p27 shRNAs were analyzed for IKKa and p27 expression by immunoblotting.

(G) Mammary tumor formation by orthotopically transplanted MT2 cells from (F). Tumor volume = length3 width2 3 0.52. Values represent mean ± SEM (n = 5).

(H) Quantitation of tumor multiplicity in 7- to 8-month-old females of the indicated genotypes. Tumor multiplicity was determined by counting all visible tumors in

each mouse. Mean ± SEM (n = 6–12). (C)–(E), (G), and (H): exact p values are indicated. See also Figure S5.
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MMTV-Erbb2/IkkaAA/AA cells formed small primary spheres that

could not be successfully propagated upon in vitro passage (Fig-

ures 5E and S5G). Kip1 heterozygocity rescued this defect and

led to efficient formation of both primary and secondary mam-

mospheres by MMTV-Erbb2/IkkaAA/AA/Kip1+/� TICs. Silencing

of p27 expression restored tumorigenic growth in IKKa-silenced

MT2 cells (Figures 5F and 5G). Most importantly, MMTV-Erbb2/

IkkaAA/AA females exhibited reduced tumor multiplicity relative to

MMTV-Erbb2/IkkaAA/+ females, which was completely rescued

by ablating one Kip1 allele (Figure 5H).

Nuclear IKKa Correlates with Reduced Nuclear p27
and Increased Metastasis in BCa
Analysis of the expression array data set GSE2603, which is

based on 121 humanBCa specimens, including 81with full prog-

nostic records (Minn et al., 2005), revealed a significant positive

correlation between IKKa mRNA amounts and tumor size (Fig-

ure 6A). IKKa mRNA abundance also exhibited a positive corre-

lation with the incidence of metastasis (Figure 6B) and a negative

correlation with metastasis-free survival (Figures 6C–6E). Curi-

ously, expression of TRAF2 and TRAF3, negative regulators of

NIK-IKKa signaling (Vallabhapurapu et al., 2008), exhibited in-

verse correlation with metastatic events (Figure 6B). In agree-

ment with IKKa’s role in control of mouse mammary epithelial

cell proliferation, gene set enrichment analysis (GSEA), a compu-

tational method that determines whether a defined set of genes

shows statistically significant and concordant differences be-

tween two biological states (Subramanian et al., 2005), revealed

that 16 gene sets related to cell-cycle progression were signifi-

cantly upregulated in tumors with high IKKamRNA content (Fig-

ure S6A). Other pathways that were upregulated in the high IKKa

group included genes involved in proteasome-mediated proteol-

ysis, DNA replication and synthesis, RNA processing, andmRNA

translation (Figure S6A), all of which are critical for cell-cycle pro-

gression. A significant enrichment ofmRNAs encoding cell-cycle

regulators, including CCNB1, CCNB2, CCND3, CCNE2, CCNA2,

CDK2, andCDK7, was also observed in the high IKKa group (Fig-

ure S6B). Based on IKKamRNA expression, the above cell-cycle

regulators formed three distinct clusters: 51% of the cancers ex-

pressed the lowest amounts of cell-cycle regulators clustered in

the low IKKa group, and 32% of BCa expressed intermediate

amounts of cell-cycle regulators and clustered in the medium

IKKa group, whereas 21% expressed the highest amounts of

cell-cycle regulators and were in the high IKKa group

(Figure S6B).

We stained an array of human BCa specimens with antibodies

to IKKa and p27 (Figure S6C). Themajority of invasive ductal car-

cinomas (IDCs) showed a mutually exclusive relationship be-

tween IKKa and p27 such that 25.6% (10/39) of IDCs without

metastasis and 73.7% (28/38) of IDCs with metastasis exhibited

high nuclear IKKa and low nuclear p27 (Figures 6F and 6G; Fig-

ure S6C). Among IDCs with valid ER, PR, and ERBB2 status,

45% ER/PR+ (18/40), 84% ERBB2+ (14/17), and 62% triple-

negative (11/17) IDCs exhibited high nuclear IKKa and low

nuclear p27.We confirmed that RANK, a potential upstream acti-

vator of NIK/IKKa during mammary basal cell expansion (Asse-

lin-Labat et al., 2010) and tumorigenesis (Schramek et al.,

2010), is expressed in 22% of IDCs (16/72), among which

87.5% (14/16) exhibit nuclear IKKa expression (Figure S6D).
Our analysis plus the known correlation between p27 subcellular

distribution and breast cancer prognosis (Shin et al., 2002; Vig-

lietto et al., 2002) underscores the importance of this pathway

in initiation and progression of human BCa and suggests that

the role of IKKa in p27 regulation may be conserved across

different mammalian species.

In summary, we identified different TICs for ErbB2-induced

mammary tumorigenesis. The NIK/IKKa module is critical for

basal TIC expansion during tumor initiation primarily by phos-

phorylating p27 and driving its nuclear export (Figure 6H). How-

ever, basal TICs-formed tumors have a final luminal appearance,

suggesting a conversion from basal to luminal lineage. Indeed,

we observed that purified basal cells cultured in matrigel formed

three major types of spheroid structures: (1) hollow spheres with

one or two layers of cells (data not shown), (2) hollow spheres

with multiple cell layers at some regions that contained cells

that were double positive for CK5 and CK8 (Figure S6E), sug-

gesting a transition from basal TICs to early progenitors (Liu

et al., 2008; Wang et al., 2008), and (3) solid spheres in which

most cells were CK8-positive with hardly any CK5 expression

(Figure S6F), mimicking the phenotype of basal TIC-derived tu-

mors (Figure 1).

DISCUSSION

Early observations that ErbB2-induced mammary cancer is of

the luminal type (Guy et al., 1992) led to the suggestion that

ErbB2-induced tumors are derived from luminal progenitors (Vis-

vader, 2011). A previous study also revealed that unlike the Wnt

oncogene, the Erbb2 oncogene does not cause basal cell

expansion in preneoplastic mammary glands (Shackleton

et al., 2006), suggesting that ErbB2-induced tumors may origi-

nate from luminal progenitors. Our study, however, suggests

that ErbB2-induced mammary cancer can arise from both basal

cells and luminal progenitors. Although our current purification

procedures do not yield 100% pure populations, one can

exclude the possibility that the tumors formed by transplanted

basal cells originate from contaminating luminal cells. It is quite

unlikely that the �10% luminal cell contamination in the basal

cell population (Figure S1C) can give rise to tumors that are larger

andmore numerous than those formed by 90%pure luminal pro-

genitors. Furthermore, inactivation of IKKa had no obvious effect

on the luminal population, both in preneoplastic mammary

glands and in tumors, but it had a clear effect on cells that ex-

press basal cell markers and on the tumorigenic potential and

mammosphere-forming ability of isolated basal cells. These re-

sults suggest that a small portion of the basal cell population

may serve as the TICs for ErbB2-induced tumors and that the

expansion of such cells that are capable of transdifferentiation

into luminal cells is IKKa-dependent. These findings are sup-

ported by previous identification of PI-MEC in parous and nullip-

arous mammary glands (Wagner et al., 2002). These cells ex-

press CD49f (Matulka et al., 2007), the same basal cell marker

used to identify multipotent MaSC (Shackleton et al., 2006),

andwere proposed to be the tumorigenic target for ErbB2 (Henry

et al., 2004). However, another study has pointed out a different

PI-MEC population present within the CD24hiCD49flo luminal cell

fraction as an alternative target for ErbB2 (Jeselsohn et al., 2010).

Our results suggest that ErbB2 can target both basal cells and
Cancer Cell 23, 647–659, May 13, 2013 ª2013 Elsevier Inc. 655



Figure 6. IKKa Expression and Nuclear Presence Correlate with Tumor Size, Metastasis, and p27 Distribution in BCa
(A–E) The Affymetrix data set GSE2603, which includes xenografted BCa cells and 81 BCa specimens, was downloaded and analyzed. Clinical breast cancer

specimens were divided into two groups based onmRNA expression. (A) Correlation of IKKamRNAwith primary tumor size. (B) Percentage of metastatic tumors

in the high and low IKKa, TRAF2, and TRAF3 groups. (C–E) Correlation between IKKamRNA and overall metastasis-free survival (C), lungmetastasis-free survival

(D), and bone metastasis-free survival (E).

(F and G) The subcellular distribution of IKKa and p27 in human invasive ductal carcinomas (n = 39 IDCs without metastasis and n = 38 IDCs with metastasis) was

determined by immunohistochemistry staining of a BCa tissue array. (a) and (b) represent specimens with nuclear IKKa/no p27; (c) and (d) represent specimens

with nuclear IKKa/cytoplasmic p27; (e) and (f) represent specimens with IKKa-negative/nuclear p27; (g) represents specimens with cytoplasmic IKKa/nuclear

p27; and (h) represents specimens with nuclear IKKa/nuclear p27. Brown, IKKa; blue, p27.

(H) Schematic summary of cellular origins of ErbB2-induced mammary tumors. NIK-IKKa-p27 signaling targets basal cells to promote ErbB2-induced tumori-

genesis. It is unknown if differentiation of basal cells into luminal progenitors is required for luminal tumor formation (dotted line and arrow). Cyclin D1, on the other

hand, targets a subpopulation of PI-MECs. See also Figure S6.
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luminal progenitors in nulliparous mammary glands. In addition

to ErbB2, Notch activation (Bouras et al., 2008) or loss of

BRCA1 (Molyneux et al., 2010) can target both basal and luminal

cells. The final luminal appearance of all ErbB2-induced tumors

may be explained by the commitment of ErbB2-transformed

basal cells to luminal differentiation. Furthermore, IKKa-depend-

ent and ErbB2-transformed basal cells may become luminal pro-

genitors (Figure 6H, dotted arrow) that are distinct from luminal

PI-MECs, the proposed target of cyclin-D1-associated CDK ac-

tivity (Jeselsohn et al., 2010). Conversion ofMaSC to luminal pro-

genitors was also seen upon Notch activation (Bouras et al.,

2008). Conversely, basal mammary tumors initiated by BRCA1

loss are derived from a subset of luminal progenitors (Lim

et al., 2009; Molyneux et al., 2010), suggesting that different

oncogenic events can cause TIC transdifferentiation. Indeed,

we observed that purified basal cells cultured in matrigel formed

hollow spheres with multiple cell layers at some regions in which

double CK5- and CK8-positive cells were identified (Figure S6E),

suggesting a transition from basal TICs to early progenitors (Liu

et al., 2008; Wang et al., 2008).

The NIK-IKKa module is only required for maintenance of

CD24medCD49f+L- basal cells in ErbB2-induced mammary tu-

mors and is dispensable for maintenance of luminal progenitors.

Given that IKKa activity is needed for ErbB2-induced mammary

tumorigenesis and for the propagation of such tumors upon

transplantation (Cao et al., 2007), our results suggest that

IKKa-dependent basal cells are the major TIC type in ErbB2-

induced mammary cancer. This connection between ErbB2

and IKKa does not seem to occur during normal development,

because ErbB2 is important for virgin ductal morphogenesis

(Jackson-Fisher et al., 2004), but IKKa is only needed for preg-

nancy-induced lobuloalveolar expansion (Cao et al., 2001).

Furthermore, whereas IKKa controls lobuloalveolar expansion

through cyclin D1 (Cao et al., 2001), the NIK-IKKa module

does not regulate cyclin D1 expression during ErbB2-induced

tumorigenesis. Instead, the NIK-IKKa cascade acts, at least in

part, by decreasing the amount of nuclear p27. The role of p27

in normal mammary gland development is controversial (Davison

et al., 2003; Muraoka et al., 2001), but it is a well-established

haploinsufficient suppressor of ErbB2-induced mammary can-

cer (Muraoka et al., 2002). We found that IKKa phosphorylates

p27 at S183 to cause its nuclear export. In human BCa, an in-

verse correlation between nuclear IKKa and nuclear p27 was

found in about 73.7% of metastatic IDCs but only in 25% of non-

metastatic IDCs, suggesting that the prometastatic activity of

IKKa (Tan et al., 2011) correlates with its ability to control p27 dis-

tribution and function. It remains to be seen, however, whether

the human TICs, within which IKKa induces nuclear exclusion

of p27, are of basal origin. Phosphorylation-induced p27 nuclear

export is a common mechanism in human cancers that relieves

the inhibitory effect of p27 on cyclin:CDK2 complexes (Shin

et al., 2002; Viglietto et al., 2002). p27 is phosphorylated at

several different sites by distinct kinases. S10 phosphorylation

was linked to ERK1/2 (Foster et al., 2003), CDK5 (Kawauchi

et al., 2006), or nuclear kinase-interacting stathmin (KIS) (Boehm

et al., 2002), and it controls the nuclear export or stability of p27.

AKT phosphorylates p27 at T157, which is located within its nu-

clear localization signal (NLS), and causes its cytoplasmic reten-

tion in advanced human BCa (Shin et al., 2002; Viglietto et al.,
2002). Other oncogenic kinases also phosphorylate p27 and

regulate its subcellular localization and/or turnover (Lu and Hunt-

er, 2010). We now add the NIK-IKKa module as another impor-

tant regulator of p27 subcellular localization. At this stage, our re-

sults suggest that IKKa-mediated p27 phosphorylation has no

effect on p27 turnover. However, we did observe that some hu-

man BCa specimens with positive nuclear IKKa exhibit reduced

or no p27 expression.

IKKa is involved in several signaling pathways that regulate tu-

mor initiation, progression, or metastasis. Besides its role in sup-

pression of maspin, an inhibitor of metastasis in prostate (Luo

et al., 2007) and breast (Tan et al., 2011) cancers, IKKa was

also reported to regulate cancer cell invasion through classical

NF-aB activation (Merkhofer et al., 2010). In hepatocellular carci-

noma, IKKa activates Notch signaling by phosphorylating

FOXA2 (Liu et al., 2012). Notch activation is critical for commit-

ment of MaSC to luminal differentiation and leads to mammary

tumorigenesis (Bouras et al., 2008). Although Notch activation

cannot explain the role of IKKa in expansion of basal TICs, it

will be interesting to determine if Notch is activated by IKKa-me-

diated phosphorylation of Foxa2 during conversion of basal TICs

into luminal progenitors.

The upstream signal responsible for activation of the NIK-IKKa

module during ErbB2-induced tumorigenesis remains elusive. In

human IDCs, IKKa nuclear staining is not tightly linked to the ER,

PR, or ERBB2 status, suggesting an ERBB2-independent mech-

anism of IKKa activation. It is reasonable to speculate that RANK

signaling may be responsible for basal cell expansion in ErbB2-

induced tumors, as it does in normal mammary glands stimu-

lated with progesterone (Asselin-Labat et al., 2010; Joshi et al.,

2010). Indeed, a recent study found that elevated RANK expres-

sion is linked to metastasis in human BCa (Palafox et al., 2012).

However, RANKL, which is required for RANK activation, is pro-

duced either by progesterone-stimulated normal luminal epithe-

lial cells or tumor-infiltrating FoxP3+ T cells in advanced ErbB2-

induced tumors, and it is not present during early stages of

ErbB2 tumorigenesis (Gonzalez-Suarez et al., 2010; Tan et al.,

2011). If RANK signaling is responsible for IKKa activation in

ErbB2-induced cancer, it should take place during a narrow win-

dow when progesterone increases at diestrus, resulting in

expansion of CD24medCD49f+L- basal cells (Joshi et al., 2010).

However, other signals may maintain NIK-dependent IKKa acti-

vation once progesterone-induced RANKL expression had sub-

sided. Perhaps, the upregulation of RANK results in its synergis-

tic interaction with other signaling molecules, thereby generating

a signal that leads to NIK stabilization and IKKa activation. How-

ever, in those human IDCs with nuclear IKKa staining that are

RANK negative, other signaling pathways are likely to activate

the NIK-IKKa module.
EXPERIMENTAL PROCEDURES

Mice and Human BCa Tissue Array

Mice were maintained under specific pathogen-free conditions, and experi-

mental protocols were approved by the University of California, San Diego An-

imal Care Program, following National Institutes of Health (NIH) guidelines.

MMTV-Erbb2-tg and Nik�/� (Yin et al., 2001) mice were intercrossed for eight

generations to generate mice of the expected genotypes in the FVB/N back-

ground. MMTV-Erbb2/IkkaAA/AA male mice were further crossed with Kip1+/�

females (Kiyokawa et al., 1996) of the C57BL/6 background. Preneoplastic
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mammary glands were harvested at 5 months of age unless otherwise indi-

cated. Tumors were considered established when they became palpable for

two consecutive weeks. One million cancer cells were injected into the #2

mammary fat pad for orthotopic transplantation unless otherwise indicated.

Tumor size was measured using a caliper and volume was calculated as

length 3 width2 3 0.52.

Human BCa tissue array was kindly provided by Dr. Jin Q. Cheng at the

H. Lee Moffitt Cancer Center. All primary BCa specimens were obtained

from patients who underwent surgery at the H. Lee Moffitt Cancer Center,

and samples were deidentified prior to our analysis. The Affymetrix data set

GSE2603 was previously published, and all samples were deidentified prior

to our analysis (Minn et al., 2005).

Harvesting Mammary Epithelial Cells and Flow Cytometry

Single cell suspensions of preneoplastic mammary glands or tumors were pre-

pared (Shackleton et al., 2006) with slight modification. Briefly, tissues were

harvested and cut into small pieces, followed with 300 U/ml collagenase and

100 U/ml hyaluronidase (Stemcell, Vancouver, BC, Canada) digestion for

6 hr in 2% FCS-containing HBSS. Organoids were sequentially resuspended

in 0.25% trypsin-EDTA (Mediatech, Corning, NY, USA) for 3 min, 5 mg/ml dis-

pase I (Stemcell), and 0.1 mg/ml DNase (Worthington, Lakewood, NJ, USA) for

1 min before filtration through a 40 mmmesh and antibody staining. Mammary

or tumor epithelial cells were magnetically purified using a Mammary Epithelial

Cell Enrichment Kit (Stemcell) to remove lineage-positive (CD45-, CD31-, and

Ter119-positive) cells, followed by surface-labeling with CD24, Cd49f, and

CD61 antibodies and 7-AAD for cell viability before flow cytometric analysis.

Statistics

All results wherever necessary were subjected to statistical analyses. A two-

tailedMann-Whitney test, nonparametric without assuming Gaussian distribu-

tion, was performed for most studies. A Kaplan-Meier curve (for tumorigenesis

study andmetastasis-free survival of human patients) was generated by Prism

software and analyzed with a log rank (Mantel-Cox) test.
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