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A B S T R A C T

Integration of single-cell RNA-sequencing (scRNA-seq) and adaptive immune receptor (AIR) sequencing (scVDJ- 
seq) is extremely powerful in studying lymphocyte development. A python-based package, Dandelion, introduced 
the VDJ-feature space method, which addresses the challenge of integrating single-cell AIR data with gene 
expression data and enhances trajectory analysis results. However, no R-based equivalent or similar methods 
currently exist. To fill this gap, we present dandelionR, an R implementation of Dandelion’s trajectory analysis 
workflow, bringing the VDJ feature space construction and trajectory analysis using diffusion maps and 
absorbing Markov chains to R, offering a new option for scRNA-seq and scVDJ-seq analysis to R users.

1. Introduction

During the development of T and B cells, variable (V), diversity (D) 
and joining (J) genes of adaptive immune receptors (AIRs) recombine 
stochastically, introducing variability in the joining region [8,27]. This 
process, known as V(D)J recombination, plays a critical role in gener
ating diversity of the AIR repertoire (AIRR) [6]. The diversity of AIRR is 
essential to adaptive immunity [18], but remains challenging for 
single-cell RNA sequencing (scRNA-seq) analysis [12]. This challenge 
necessitates the integration of scRNA-seq with AIR sequencing 
(scVDJ-seq) [13].

Scirpy [23], Dandelion [25,20], and scRepertoire [29,4] are widely 
used tools for conducting scVDJ-seq analysis. Among these, Dandelion’s 
Python-based innovative strategy of creating a VDJ feature space 
addressed some challenges in integrating AIR data within scRNA-seq, 
arising from the mixture of categorical and continuous data character
istics inherent to AIRR data. The feature space was leveraged to enable 
trajectory analysis informed by both the gene expression and VDJ data, 
which improved the prediction accuracy of trajectories from 
double-positive T cells to CD4/CD8 T cells, demonstrating significant 
potential for future applications [25]. This improvement is particularly 
notable because most existing trajectory analysis tools rely solely on 
gene expression matrices. While this strategy is effective in many con
texts, they may fall short in modelling lymphocyte development, where 
VDJ recombination critically determines the receptor-antigen affinity, 
which in turn influences the development direction and the final cell 

fate. Integrating VDJ features with transcriptomics profiles enables 
trajectory analysis tools to account for both gene expression and VDJ 
usage, offering a more comprehensive view of lymphocyte differentia
tion. However, no comparable integration method currently exists in R, 
limiting R users’ ability to perform such comprehensive analyses of 
lymphocyte trajectories.

Here, we introduce dandelionR, an R-based scVDJ-seq trajectory 
analysis tool replicating the trajectory analysis workflow of Dandelion. 
dandelionR enables the construction of the VDJ feature space to perform 
trajectory analysis using diffusion maps and absorbing Markov chains, 
with seamless interaction with scRepertoire. The current version is 
available on GitHub and through Bioconductor, along with user docu
mentation and additional resources. This tool addresses existing gaps in 
functionality among current tools, offering researchers a more conve
nient solution for analysing immune repertoires and single-cell 
sequencing data in R. By doing so, it facilitates a deeper exploration of 
lymphocyte development and its functional mechanisms.

2. Methods

For trajectory analysis, Dandelion requires cell pseudobulks, typically 
with Milo [7], to construct the pseudobulked VDJ feature space. The 
feature space is then used as the input for Palantir [19], a trajectory 
analysis tool which employs diffusion maps and absorbing Markov 
chains to infer trajectory. Palantir produces pseudotime values and 
probabilities of each pseudobulk, which Dandelion subsequently projects 
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back to each cell.
dandelionR is developed and tested in R v4.4.1 and is available 

through Bioconductor (from release 3.21) and can interact with scRe
pertoire v2.2.1 onwards. As an R implementation of Dandelion, it aims to 
reproduce the preprocessing, feature-space-building and result- 
projecting functions of the original software.

The typical workflow of dandelionR proceeds as follows:

2.1. Input

dandelionR uses a SingleCellExperiment object already combined with 
vdj data, such as from reading with scRepertoire [29,4], or processed 
using the python package Dandelion with AnnData and converted to 
SingleCellExperiment.

2.2. Preprocessing

This step includes filtering cells with non-productive immune re
ceptors and ambiguous VDJ chain status, e.g., orphan/incomplete or 
multiple TCRs in one cell, retaining only cells with relevant or complete 
VDJ data. Then, the remaining VDJ contigs that express the highest UMI 
counts in a cell are extracted for downstream analyses. Depending on the 
data source, some preprocessing steps may not be necessary and can be 
skipped or modified. For example, when using scRepertoire-derived data, 
the user should set ‘already.productive = TRUE’ to skip the productive 
filtering process, as the filtering has already been handled as part of the 
scRepertoire’s standard workflow. Additionally, there are many param
eters that users can adjust according to their analysis requirements. For 
example, they can set ‘allowed_chain_status = NULL’ to skip checking 
whether a cell has relevant TCR chains and accept all contigs. This 
flexibility allows for a highly customizable preprocessing workflow as 
per user requirements. A default set of parameters has been defined 
based on the original Dandelion workflow to replicate the initial findings 
[25].

2.3. Pseudobulking and feature space constructing

Pseudobulking can be achieved through the miloR (v2.0.0) package 
[7]. Within each pseudobulk, dandelionR will tabulate the usage of each 
VDJ gene to create the VDJ feature space.

2.4. Trajectory analysis

Using the constructed VDJ feature space as input, we can utilise 
trajectory analysis tools to obtain pseudotime values and branching 
probabilities of each pseudobulk.

2.5. Projection

The calculated pseudotime values and probabilities of each pseu
dobulk are then projected back onto individual cells, generating the final 
trajectory analysis results.

2.6. Data

To evaluate the reproducibility of dandelionR, we converted the 
same data from Dandelion’s tutorial, into SingleCellExperiment format. 
The original data, derived from [25], represents a real-world single-
cell-level map of immune systems development, and contains gene 
expression data with VDJ information. To analyse this dataset, Dandelion 
filtered out cells lacking TCR sequencing or belonging to the CD137 or 
MAIT-sorted populations. To illustrate the developmental trajectory of T 
cells, Dandelion further subsetted the dataset to retain only five cell 
types: DP(P), the double positive T cell undergoing active proliferation, 
DP(Q), the double positive T cell with limited proliferation and active 
VDJ recombination, ABT/ENTRY, the immature αβ T cell, CD4 +T, CD4 

single positive T cell, and CD8 +T, CD8 single positive T cell.

3. Results

3.1. Replication of workflow before trajectory inference

To replicate the Dandelion workflow before trajectory analysis 
(Fig. 1), we implemented the following functions:

The dandelionR::setupVdjPseudobulk function preprocessed the single- 
cell VDJ data by Suo et al. [24]. It then filtered out cells with 
non-productive or unclearly mapped alpha-beta TCR chains, extracting 
the main productive chain and storing it in a new column within the 
colData slot of the SingleCellExperiment object. Out of 65102 cells in the 
data, 17308 cells were retained after filtering due to having complete 
TCR information necessary for downstream analyses.

Using MiloR [7], we constructed a k-nearest neighbour graph from 
the preprocessed data, treating each neighbour as a pseudobulk. This 
step allocated cells to pseudobulks based on the similarity of their gene 
expression profiles. Subsequently, the dandelionR::miloUmap function 
utilised the graph’s adjacency matrix to generate a UMAP (Uniform 
Manifold Approximation and Projection). The dandelionR::vdjPseudobulk 
function then created a VDJ feature space by counting the usage of each 
gene in each pseudobulk. With 160 V/D/J genes and 1516 pseudobulks, 
the VDJ feature space captured features from both gene expression and 
VDJ information in a continuous data format.

3.2. Implementing trajectory inference based on absorbing Markov chains

The Dandelion workflow originally used the constructed feature 
space as an input for Palantir, a trajectory analysis tool, treating each 
pseudobulk as a cell and VDJ usage as gene expression information. 
Palantir employs probabilistic methods [19], which are primarily 
implemented in Python-based tools [9]. However, most R-based tools do 
not incorporate such methods. Instead, TSCAN [15,14] utilises a 
self-developed travelling salesman problem (TSP) algorithm, Slingshot 
[22] combines both minimum spanning tree with a self-modified prin
cipal curve, and destiny [1] applies a diffusion map. While Ouija [5] is a 
probabilistic method utilising a Bayesian latent variable model, it is 
unsuitable for our dataset. This is because Ouija is limited to data with a 
linear topology, whereas we are certain that our dataset exhibits a 
bifurcation between CD4 + and CD8 + cells.

Since there are no direct Palantir equivalent or similar methods in R, 
we first attempted to use Slingshot [22] for downstream analysis, 
following the comparison framework provided by dynverse [17]. How
ever, Slingshot does not provide outputs analogous to branching proba
bilities (see Supplementary Information 1). To address this limitation, 
we sought to implement Palantir’s trajectory analysis function in R. We 
anticipate that this approach could not only address the lack of 
branching probability in our workflow but also help fill a critical gap in 
the R community, where probabilistic methods for trajectory analysis 
remain scarce.

In the original Dandelion workflow, Palantir first identifies waypoints 
after preprocessing and then uses a diffusion map to compute diffusion 
pseudotime on each cell [19]. These waypoints are subsequently 
employed to construct an absorbing Markov chain, which calculates 
transition probabilities. Finally, pseudotime and branch probabilities 
derived from the waypoints are projected onto individual cells.

We utilised the destiny package to calculate the diffusion map and 
pseudotime. Subsequent processes—including waypoint selection, 
absorbing Markov chain construction, probability calculation, and 
projection—were implemented independently and consolidated into a 
function called dandelionR::markovProbability (Fig. 2).

Finally, the probabilities and pseudotime of each pseudobulk 
computed by VDJ feature space were projected back to individual cells 
through the dandelionR::projectPseudotimeToCell function (Fig. 3). A total 
of 39 cells were removed due to not belonging to any neighbourhoods.
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Fig. 1. Overall workflow from preprocessing to trajectory analysis using dandelionR.
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3.3. Benchmarking

To evaluate the computational performance of dandelionR, we 
compared the total runtime time and the peak memory usage of the 
tutorial workflows in both dandelionR and Dandelion. The results are 
summarised in Supplementary Information.

To assess the agreement between dandelionR and the original 
Dandelion, we calculated several statistical metrics: the Pearson corre
lation coefficient, the Lin’s Concordance Correlation Coefficient (CCC), 
the Kendall rank correlation coefficient, and the mean absolute error 
(MAE). In addition, we generated Bland-Altman plots to visualise the 
difference between outputs of the two implementations.

3.3.1. Benchmark 1: dandelionR (R) versus Dandelion (Python)
We first compared the outputs of the overall workflow. The dande

lionR output includes 17,281 cells, while the original Dandelion output 
contains 17,234 cells, with 17,208 shared between the two. This 
discrepancy may stem from differences in random seed handling be
tween R and Python, particularly during neighbour selection in the 
miloR step. For each intersecting cell, we compared both pseudotime and 
CD4 + branching probability between dandelionR and Dandelion 

(Fig. S1). As the dataset only has two terminal fates, the sum of CD4 +T 
probability and CD8 + probability from each cell equals one. Therefore, 
we report only the results of CD4 + probability.

The Pearson correlation coefficients are high for both pseudotime 
and CD4 + probability, indicating strong linear relationship between 
the two implementations. However, Lin’s CCC for CD4 + probability 
(0.850) falls below the commonly accepted threshold of 0.9, suggesting 
room for improvement in agreement. Similarly, the Kendall rank cor
relation for pseudotime (0.684) indicates only moderate consistency in 
rank ordering. Moreover, the MAE values reflect a degree of bias be
tween the outputs. We next explored which steps in the workflow 
contributed to these differences.

3.3.2. Benchmark 2: using Palantir’s diffusion map and pseudotime in both 
workflows

The absorbing Markov chain in dandelionR was implemented via self- 
developed functions, which allows flexible modification to improve the 
agreement between workflows. Moreover, as it and the projection step 
constitute the final stage of the pipeline, its performance can be assessed 
in isolation. These factors motivated us to examine the effect of this step 
first.

Fig. 2. Trajectory analysis with Markov chain in dandelionR. (a) dandelionR’s trajectory analysis workflow that incorporates outputs from diffusion maps generated 
by destiny. (b) Pseudotime and branching probabilities of each pseudobulk after trajectory analysis.
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To evaluate the agreement of the absorbing Markov chain step, we 
used dandelionR to construct the VDJ feature space (Fig. S2). The 
resulting data were converted to AnnData format to serve as input for 
Palantir. The eigenvectors and eigenvalues of Palantir’s diffusion map 
were saved and transferred back to R to reconstruct the DiffusionMap 
object by destiny package. Additionally, the pseudobulk-level pseudo
time computed by Palantir was also transferred back to R. The recon
structed DiffusionMap object and the pseudotime were used as the inputs 
of absorbing Markov chain of dandelionR. The resulting outputs were 
compared with those from Palantir, with both workflows using the same 
input feature space. Since both dandelionR and Dandelion use the same 
pseudobulk-level pseudotime, the possible discrepancy in final pseudo
time could only originate from the projection step after absorbing 
Markov chain. With all three correlation coefficients equal to 1.000 and 
a negligible MAE (2.137 ×10⁻⁸), we confirmed that no difference arose 
in the projection step.

The remaining discrepancy observed in CD4 + probability therefore 
should have stemmed from differences in the absorbing Markov chain 
implementation itself. By using an identical diffusion map representa
tion and pseudotime as input, we observed the improved agreement in 
all metrics except for MAE. Notably, the Kenall increased from 0.790 to 
0.925, suggesting that ranking consistency of the branching probability 
is highly sensitive to differences in the diffusion map and pseudotime. 
Lin’s CCC also increased, but still remained below 0.9, indicating room 
for further improvement.

3.3.3. Benchmark 3: modifications in absorbing Markov chain 
implementation

After examining the exact procedures in Palantir’s and dandelionR’s 
absorbing Markov chain implementations, we hypothesized that the 
primary source of discrepancy lies in the K-nearest neighborhood (KNN) 
graph construction step within the Markov chain building process.

Palantir constructs the KNN graph using scikit-learn’s Near
estNeighbors function, which applies K-dimensional (KD)-tree methods 
when the dataset is small. In contrast, dandelionR uses the make
KNNGraph function from the bluster package in Bioconductor, which 
relies on brute-force approach for small datasets.

To test this hypothesis, we substituted bluster with RANN, an R 
package which also employs KD-tree for KNN graph construction 
(Fig. S3). We observed substantial improvements in Pearson correlation, 
Lin’s CCC, and MAE for CD4 + probability. While the Kendall rank 
correlation is slightly lower than that in Benchmark 2 (0.925–0.895), it 
still indicates a high degree of ranking agreement and is considered 
acceptable.

Based on the improved benchmarking performance, we have elected 
to switch to RANN (from bluster) to be the default method for KNN 
construction in dandelionR’s function for calculating branch 
probabilities.

3.3.4. Benchmark 4: compatibility of diffusion map representations
Finally, we examined the agreement between destiny and Palantir in 

the diffusion map and pseudotime calculation step. Using dandelionR, 
we first constructed the VDJ feature space. This time, however, we used 
the eigenvectors and eigenvalues produced by destiny as the input to 
Palantir (Fig. S4).

Nevertheless, the pseudotime produced by Palantir under this setting 
is problematic. For example, DP(Q) cells are assigned the highest 
pseudotime value, which contradicts the expected developmental pro
gression. As a result, all metrics are poor. This result indicates that the 
diffusion map representation produced by destiny is not compatible with 
Palantir’s framework.

However, the CD4 + fate probabilities, although less consistent to 
previous benchmarks, still retain a biological meaningful pattern and 
show relatively high Pearson correlation (0.959). This suggests that the 

Fig. 3. Projection of pseudobulked trajectory results to single cells. (a) Single-cell UMAP plot coloured by cell types. (b, c, d) UMAP coloured by pseudotime, 
branching probabilities to CD8 +T and CD4 +T of individual cells.
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absorbing Markov chain is somewhat robust to suboptimal pseudotime 
inputs, and that the destiny diffusion map still captures relevant bio
logical structure in the feature space.

3.4. Integration with scRepertoire workflow

scRepertoire integrates VDJ information with gene expression, storing 
it in the colData of a SingleCellExperiment object. The VDJ usage we need 
lies in the column ‘CTgene’, where V, D, J genes are separated by periods 
and TRA and TRB chains are separated by an underscore. For instance, 
the entry ‘TRAV23.TRAJ21.TRAC_TRBV5–1.NA.TRBJ2–1.TRBC2’ in
dicates that the TRA chain has V gene TRAV23 and J gene TRAJ21, 
while TRB chain contains V gene TRBV5–1, unclear D gene, and J gene 
TRBJ2–1. If any of the chains is absent, it is represented as ‘NA’, such as 
‘TRAV13–2.TRAJ23.TRAC_NA’, where the TRB chain is absent.

However, the calculation of VDJ feature space treats each V, D, and J 
gene separately. To address this, we developed an internal function that 
extracts the VDJ information from the ‘CTgene’ column generated by 
scRepertoire, splitting the V, D and J genes and storing them in individual 
columns. This function was incorporated in dandelionR::setupVdj
Pseudobulk to ensure compatibility with scRepertoire. Additionally, we 
introduced parameters to allow users to skip the additional filtering, as it 
is already performed within scRepertoire. To prevent errors from splitting 
the V, D, J genes correctly, users should first ensure that cells with 
multiple contigs have already been filtered by setting ‘filterMulti 
= TRUE’ during scRepertoire::combineTCR step.

Overall, the implementations above allowed dandelionR to function 
as a downstream tool for scRepertoire (Fig. 4), enabling further trajectory 
analysis after the combination of VDJ information with gene expression 
data.

4. Discussion

We have successfully reproduced Dandelion’s trajectory analysis 
workflow, and incorporated it to scRepertoire’s workflow. These steps 
enable dandelionR to function as an R-based trajectory analysis tool that 
utilised both gene expression data and VDJ information combined by 
scRepertoire. The consistency between the outputs of dandelionR and the 
original Dandelion was evaluated through four benchmarking analyses. 
These comparisons include assessments of pseudotime and branching 

probability using multiple statistical metrics.
dandelionR implements part of Palantir’s trajectory analysis functions 

based on absorbing Markov chain. Originally, absorbing Markov chain, 
with the ability to define terminal states from the markov chain in an 
unsupervised step, allows the Palantir package to handle data with 
multifurcation topology. We have implemented the ability to define 
terminal states as well. However, the package we used to perform 
diffusion map, destiny, is only suitable for a dataset with a bifurcation or 
linear topology, which limits the versatility of dandelionR’s trajectory 
inference function on more complex developmental structures.

To overcome this limitation, users may choose to substitute the 
default trajectory inference step with other R-based tools such as Sling
shot, which supports tree-like structures, although Slingshot does not 
produce branching probability (as discussed in Supplementary Infor
mation 1). Pseudotime values derived from such tools at the pseudobulk 
level can be projected back to single-cell resolution using the dande
lionR::projectPseudotimeToCell function.

Moreover, dandelionR has not yet been applied to B cell development 
data, which involves more complex processes than T cell development. 
For instance, after V(D)J recombination, if an immature B cell is self- 
active, it may re-upregulate RAG to undergo additional rearrange
ments, a process known as receptor editing [11,16,26]. This forms a 
cyclic trajectory, which cannot be represented by absorbing Markov 
chains, as these inherently model unidirectional progression toward 
absorbing (terminal) states.

Adapting trajectory inference methods to account for cyclic devel
opmental processes is non-trivial, requiring both algorithmic changes 
and appropriate datasets. Furthermore, the performance and assump
tions of absorbing Markov chains in B cell development merit further 
investigation. In our search for suitable B cell datasets with paired BCR 
sequencing, we considered several published datasets. However, many 
did not meet key criteria: (1) derived from bone marrow, the site of B 
cell maturation; (2) sufficient cell numbers to capture intermediate 
developmental states; (3) availability of BCR sequencing to construct V 
(D)J feature space. For example, the Dong et al. dataset [10] could not 
be accessed due to restricted data access conditions and errors with the 
provided alternative accession number. The dataset from Tonglin et al., 
[28], although it includes healthy controls, only contained 972 healthy 
B cells, which is likely insufficient even for miloR neighbourhood con
struction. Two other papers e.g. Bandyopadhyay et al., [3] and Baccin 

Fig. 4. dandelionR’s integration with scRepertoire’s workflow. Users would perform preprocessing of the scVDJ-seq data as per standard scRepertoire workflow and 
this can then serve as input for dandelionR.
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et al., [2] contain suitable cell types and annotations but lack BCR 
sequencing. Finally, the paper from Strati and colleagues [21] focuses on 
immunotherapy of large B-cell lymphoma, making it less ideal for 
modeling normal development.

We also highlight the fundamental discrepancies in diffusion map 
construction and KNN graph construction between R and Python pack
ages generally, which hinder our ability to fully implement the original 
Dandelion and Palantir workflow for TCR trajectory inference. In 
particular, for KNN graph construction, adopting a KD-tree-based 
approach yields results more consistent with the original Dandelion 
implementation. However, it remains unclear whether brute-force or 
KD-tree methods more accurately capture the underlying biological 
structure. Despite this ambiguity, our benchmarking demonstrates that 
the approaches are highly concordant in terms of global correlation, 
although subtle differences in cell trajectory ranking may persist. Based 
on the aforementioned limitations, future directions will focus on 
replacing destiny with alternative methods for conducting diffusion 
maps, which may improve interoperability and better capture underly
ing biological structures in the single-cell data.

Overall, while we have now developed a comparable TCR trajectory 
inference workflow compatible with R environments, available as a 
package through Bioconductor, we still recommend that users compare 
results against multiple trajectory inference tools, and where possible, 
across programming languages/environments, to assess the robustness 
of the inferred trajectories with respect to biological interpretation. 
Future work will explore implementing additional functionalities from 
the original Dandelion Python package e.g. filtering and network gen
eration, as well as any future new functionalities, where possible.
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