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Abstract 

Single-cell adaptive immune receptor repertoire sequencing (scAIRR-seq) and  

single-cell RNA sequencing (scRNA-seq) provide a transformative approach to profil-

ing immune responses at unprecedented resolution across diverse pathophysiologic 

contexts. This work presents scRepertoire 2, a substantial update to our R package 

for analyzing and visualizing single-cell immune receptor data. This new version 

introduces an array of features designed to enhance both the depth and breadth 

of immune receptor analysis, including improved workflows for clonotype tracking, 

repertoire diversity metrics, and novel visualization modules that facilitate longitudinal 

and comparative studies. Additionally, scRepertoire 2 offers seamless integration with 

contemporary single-cell analysis frameworks like Seurat and SingleCellExperiment, 

allowing users to conduct end-to-end single-cell immune profiling with transcriptomic 

data. Performance optimizations in scRepertoire 2 resulted in a 85.1% increase in 

speed and a 91.9% reduction in memory usage from the first version over the range 

repertoire size tested in benchmarking, addressing the demands of the ever- 

increasing size and scale of single-cell studies. This release marks an advance-

ment in single cell immunogenomics, equipping researchers with a robust toolset to 

uncover immune dynamics in health and disease.

Introduction

High-throughput sequencing technologies are foundational to modern biomedical 
innovation, driving advancements across various fields. Single-cell technologies 
stand out for their unparalleled ability to dissect cellular heterogeneity and dynamics 
across tissues and conditions, making them indispensable in immunology and oncol-
ogy research. By combining scRNA-seq with scAIRR-seq, derived either through 
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direct sequencing or inference from transcriptomic data, researchers can concur-
rently analyze gene expression and immune receptor diversity at the single-cell level 
[1]. The capability to profile both the transcriptional states and clonotype structures 
of T and B cells through scRNA and scAIRR data provides a robust framework for 
tracking immune cell activation, clonal expansion, and persistence. These are critical 
parameters for assessing vaccine efficacy, evaluating immune responses in cancer, 
responses in cellular therapies, like chimeric antigen receptor T-cell therapies, and 
elucidating mechanisms underlying autoimmune diseases [2].

Despite the rapid growth of scAIRR analysis, limitations remain with existing 
tools (reviewed in S1 Table), primarily available in Python and R [3]. Many tools lack 
robust integration for immune receptor profiling with transcriptomic data or flexibility 
in data export formats, which hinders reproducibility and cross-platform compatibil-
ity in expanding datasets [3]. The increasing demand for standardized, flexible, and 
scalable analysis frameworks underscores the need for improved software solutions 
in this field. The growing size and scope of single-cell data creation also underscores 
this need for improved standardization and efficiency.

The initial release of scRepertoire addressed some of these needs, establishing 
itself as an integral tool within single-cell workflows due to its compatibility with widely 
used R-based single-cell analysis platforms like Seurat and SingleCellExperiment 
[4]. scRepertoire enabled researchers to merge, filter, and visualize clonotype data, 
offering essential resources for the in-depth characterization of immune repertoires 
at the single-cell level. As one of the first open-source packages for scAIRR analysis, 
scRepertoire has over 32,000 downloads from Bioconductor and is a broad utility for 
the field. Nevertheless, much like the fast-paced changes in scRNA analysis, scRep-
ertoire required a significant rebuild to support new and emerging analyses and 
increasing sizes of experimental data sets.

Here, we present the latest release of scRepertoire, which introduces a suite of 
powerful new features and enhancements aimed at refining immune receptor anal-
ysis and visualization and are the focus of the Design and Implementation section. 
This update includes advanced tools for summarizing amino acid sequences, such as 
positional entropy and residue-specific composition profiles, alongside visualizations 
of Kmer distributions and gene pairings. User utilities have been optimized for speed, 
with faster generation of clonal pairs (S1 Fig), improved clustering, and expanded 
support for importing and exporting clone data across data types. Additional features 
include identifying T and B cell receptor (TCR/BCR) doublets and improved repertoire 
comparisons with customizable normalization. scRepertoire seamlessly interacts with 
deep learning modules such as Trex [5], Ibex [6], and ImmApex [7] and other pack-
ages, such as APackOfTheClones [8], scPlotter [9], and DandelionR [10], facilitating 
a more comprehensive and scalable approach to single-cell immune profiling.
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Design and implementation

Workflow

The scRepertoire package provides a comprehensive, R-based framework for immune repertoire analysis, seamlessly 
integrating clonotype data with transcriptomic profiles to enable sophisticated insights into immune cell populations (Fig 
1). The recent redesign of scRepertoire emphasizes accessibility and usability, with universalized function names and 
language to make the package approachable for novice and experienced users. Documentation has been significantly 
expanded, and a dedicated pkgdown website now hosts extensive examples tutorials, and documentation, creating a 
readily accessible knowledge base for users to maximize the package’s capabilities. A full summary of the changes is 
available in S2 Table.

This workflow processes data from multiple sequencing and alignment formats (e.g., TSV, JSON, CSV) and is com-
patible with outputs from widely used alignment pipelines, supporting flexibility in data input. Following data import, 

Fig 1.  Schematic overview of the scRepertoire workflow and analyses. Sequence alignments from standard pipelines or custom reconstruction 
methods are directly imported into scRepertoire, which performs filtering and pairing of B- or T-lymphocyte receptors. A variety of clonal analyses and 
visualizations are then available, with the resulting immune receptor data seamlessly attachable to single-cell RNA, protein, or chromatin assays pro-
cessed via Seurat or SingleCellExperiment. scRepertoire also offers native compatibility with immApex, Trex, and Ibex, enabling deep-learning–based 
embeddings of scAIRR sequences for classifier development or multimodal data integration. The figure utilizes images from the NIAID BioArt (https://
bioart.niaid.nih.gov/) repository under the CC-BY license.

https://doi.org/10.1371/journal.pcbi.1012760.g001

https://bioart.niaid.nih.gov/
https://bioart.niaid.nih.gov/
https://doi.org/10.1371/journal.pcbi.1012760.g001


PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1012760  June 27, 2025 4 / 10

scRepertoire performs stringent clonal pairing and quality control to assign clonotypes at the single-cell level. The assign-
ment of paired clones allows for robust clonal analysis that quantifies and visualizes clonal expansion and lineage relation-
ships within B-cell and T-cell populations. By linking RNA expression data with clonal sequences, scRepertoire provides 
an integrative view of immune clonotypes within their transcriptional context, which is essential for uncovering immune 
cells’ functional states and diversity, such as analyzing pathogenic sequences in autoimmunity [11] (S2 Fig) or vaccination 
responses [5] (S3 Fig). In addition to core analysis capabilities, scRepertoire supports downstream applications through 
compatible tools: Trex, Ibex, and immApex, which aid in the development of models and classifiers for the TCR, BCR, or 
adaptive immune receptors, respectively. These extensions allow users to tailor their analyses toward specific receptor 
types and leverage advanced computational techniques, including machine learning, for predictive modeling.

Expanded data compatibility

scRepertoire 2 supports a range of scAIRR-seq formats, including 10x Genomics, AIRR, BD Rhapsody, MiXCR [12], 
Parse Bio Evercode, TRUST4 [13], and WAT3R [14]. With the additional format support, a new data importer loadCon-
tigs() has been introduced and automatically detects input formats, loading scAIRR-seq data from either a list in the R 
environment or a directory. In addition, the loadContigs() has robust error handling, warning users of misclassified formats 
and allowing users to assert the format directly. It should be noted that scRepertoire functions on aligned data and is 
dependent on the proper preprocessing and alignment of the supported formats. Users need to understand the data being 
imported into scRepertoire. For exporting data, we added exportClones(), a flexible solution for exporting scRepertoire 
clonal data, making it compatible with multiple formats, such as AIRR or TCRmatch [15], for easy integration into down-
stream analysis tools. This function allows users to save tabular clone information organized by barcodes and sequence 
details such as those compatible with AIRR, supporting seamless data sharing and interoperability across pipelines. In 
addition, scRepertoire now allows custom clonal definitions in a cell-wise metadata column so that clones identified with 
alternative pipelines can be visualized/analyzed within scRepertoire.

Performance optimizations

With the integration of C++ source code via Rcpp, essential methods have been re-engineered internally to significantly 
reduce both practical runtime overhead and theoretical time complexity. The most important enhanced methods include 
those for generating clonal pairs for both with combineTCR() and combineBCR(), where the runtime of the receptor 
sequence - cell pairing step now approximates 85.1% faster with a 91.9% reduction in memory utilization from the previ-
ous version over a range of 1000 to 1x106 cells in the benchmarking analysis (S1 Fig). In the current version, scRepertoire 
v2 can process 1x106 cells in a median time of 32.9 seconds, faster than other pipelines tested (S1 Fig). For BCR clono-
type inference and general clonal clustering based on Levenshtein distance, the runtime has also been reduced to scale 
linearly. In addition, threshold length filtering has been implemented when clustering clones by edit distance. A similar 
optimization was performed to calculate amino acid and nucleotide-based Kmer counts. For all visualization functions, 
we implemented a conditional evaluation to prioritize the order of operations based on the user’s specified output. Spe-
cifically, if the user selects data export and plotting functionalities, the package now evaluates and executes data export 
tasks before initiating plotting.

Enhanced repertoire summarization

The latest release of scRepertoire introduces advanced features for comprehensive immune repertoire summarization, 
focusing on amino acid composition and variable, diversity, and joining (VDJ) gene usage. The positionalProperty() func-
tion facilitates the examination of physical properties along the complementarity-determining region 3 (CDR3) sequence, 
enabling detailed analysis of specific sequence regions potentially involved in antigen specificity or structural stability. 
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Additionally, the positionalEntropy() function quantifies variability along CDR3 sequences by measuring entropy at each 
amino acid residue, allowing for identifying conserved or highly variable motifs that may have implications for epitope 
recognition. Further augmenting these capabilities, the suite of amino acid compositional tools enhances the analysis of 
amino acid and sequence motifs. The percentAA() function calculates amino acid composition frequencies across recep-
tor sequences, supporting the detection of conserved amino acid signatures across clonotypes. Similarly, percentKmer() 
evaluates Kmer distribution, providing a granular assessment of recurring sequence motifs across diverse clonotypes or 
experimental conditions. Finally, percentVJ() visualizes the frequency and distribution of V-J gene pairings in an intuitive 
heatmap format, facilitating the identification of overrepresented gene combinations within immune repertoires.

Clonal diversity analysis

The clonalRarefaction() function in scRepertoire offers a versatile framework for rarefaction analysis, allowing users to 
estimate clonal richness while accounting for potential sampling biases. Importantly, the function also computes statistical 
uncertainties by deriving confidence intervals via bootstrap resampling. This feature quantifies the variability inherent in 
diversity estimates due to sampling differences, thereby strengthening the reliability of cross-sample comparisons. This 
capability is especially valuable in comparative studies of immune responses across diverse experimental conditions, 
where controlled adjustments for sampling depth and uncertainty are essential. Moreover, the function’s grouping feature 
further enhances its utility by enabling structured comparisons across experimental or biological conditions, supporting 
a robust and nuanced assessment of clonal diversity under varied settings. Additionally, scRepertoire has streamlined 
the StartracDiversity() function, removing custom data dependencies to enhance computational efficiency and accessi-
bility. This re-implementation facilitates estimating differential clonal expansion, cross-tissue migration, and state transi-
tions using differential diversity quantifications, offering critical insights into clonal dynamics within and between tissue 
environments.

Empowering ML applications

Building on the established Seurat and Bioconductor SingleCellExperiment infrastructure, our VDJ integration builds a 
direct bridge to structured data for machine/deep learning. An application example built upon scRepertoire 2 is the amino 
acid autoencoders Trex [5] and Ibex, which can leverage scAIRR sequences to create meaningful latent dimensions. 
These latent dimensions can be used independently or incorporated into multimodal single-cell analysis workflows and 
have been used to perform antigen prediction with in vitro validation [5]. Both models use ImmApex [5], a scRepertoire- 
compatible companion toolkit that facilitates deep and machine learning for immune receptor sequences for classification 
or predictive modeling. This allows researchers to perform supervised or unsupervised analysis of their own or public 
data.

Results

An example data set for exploring scRepertoire capabilities is provided by Jiang et al. [13]. This data set includes  
single-cell RNA and immune profiling (both TCR and BCR) of erythema migrans lesions (SKL) and adjacent normal skin 
(SKN), offering a unique view into immune activity in distinct tissue microenvironments. The cohort consists of six dis-
tinct patients. However, two samples were removed for the downstream analyses due to the lack of scAIRR sequences 
or lack of sequencing of a secondary tissue. After quality control filtering, individual lymphocytes with productive scAIRR 
sequences were retained, identifying 13 distinct cell types (Fig 2A). These cell types demonstrated varied clonal expan-
sion profiles, providing insights into immune cell dynamics within the tissue (Fig 2B).

Plasma cells exhibited the most prominent clonal expansion among the identified cell types. In the 192567SKL sample, 
a single clone accounted for over 50% of the cluster, highlighting its dominant presence (Fig 2B). Other cell types with 
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Fig 2.  Single-cell analysis of lymphocytes in erythema migrans lesions and adjacent normal skin. A. UMAP projection derived from single-cell 
RNA and TCR/BCR sequencing, revealing distinct lymphocyte subpopulations. B. UMAP overlay highlighting clonal expansion by relative frequency. Bar 
plots illustrate occupied clonal space, ranked by clone size and stratified by lymphocyte cell type. C. Alluvial plots showing TCR clones shared among 
erythema migrans lesions (SKL), adjacent normal skin (SKN), and blood (BL), featuring the top 20 clones per patient by repertoire proportion. D. Boot-
strapped Shannon and inverse Simpson diversity values for each sequencing run with clonal rarefaction and extrapolation curves based on Shannon 
diversity indices. E. Proportion of amino acids and mean Atchley factor values across the heavy-chain CDR3 region for samples 192566 and 192567. 
F. Heatmap of TRAV gene usage alongside principal component analysis of sequencing runs. G. TRA chain clustering based on amino acid sequences 
using a normalized Levenshtein edit distance threshold (0.85), visualized on a UMAP and via a Fruchterman–Reingold layout in igraph. The dot size 
indicates the number of sequences or extent of clonal expansion.

https://doi.org/10.1371/journal.pcbi.1012760.g002

https://doi.org/10.1371/journal.pcbi.1012760.g002


PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1012760  June 27, 2025 7 / 10

significant expansion included CD4 + tissue effector memory (CD4_TEM) cells, cytotoxic CD8 + T (CD8_CTL) cells, and 
mucosal-associated invariant T (MAIT) cells. These findings underscore the diversity of clonal activity across immune cell 
populations.

To further explore immune dynamics, the top 20 TCR clones were examined for clonal sharing across tissues within the 
same patient (Fig 2C). Notably, overlap was observed between SKN and SKL samples, suggesting potential roles for  
tissue-resident T cells in both environments. In the 192566 sample, which included sequencing from peripheral blood 
(BL), top TCR clones shared between BL and SKL samples were mutually exclusive of SKN samples. This finding sug-
gests specific trafficking or retention mechanisms. Interestingly, no BCR clonal sharing was observed across tissues, 
potentially reflecting different modes of immune compartmentalization or low overall sampling.

To quantify repertoire diversity, scRepertoire applied Shannon diversity and inverse Simpson diversity estimates 
(Fig 2D). By bootstrapping across the smallest repertoire in the comparison group and averaging results from 100 
runs, scRepertoire provided robust diversity estimates. Additionally, diversity metrics enabled interpolation and 
extrapolation using the iNEXT package [14], facilitating rarefaction and sample completeness assessments. These 
analyses revealed differences in diversity that may correspond to distinct immune pressures or clonal selection 
processes.

Repertoire summarization within scRepertoire provided additional insights into amino acid use and sequence proper-
ties. For the two samples with BCR sequences within multiple tissues, CDR3 sequence analysis revealed a predominant 
usage of serine (S) at positions 6 and 11 in sample 192567 (Fig 2E). Analysis of amino acid properties, such as Atchley 
factors (AF) [16], indicated positional decreases in molecular size (AF3) and electrostatic charge (AF5) associated with 
these serine-enriched positions, potentially influencing antigen-binding characteristics.

Additional summarization approaches included calculating the percentage of amino acid Kmers, VJ gene pairing, and 
single gene usage within scAIRR chains (Fig 2F). These metrics provided a comprehensive overview of repertoire com-
position. Dimensional reduction techniques, such as principal component analysis, were applied to exported data (Fig 
2F). Clustering of clones by nucleotide or amino acid sequence, based on normalized Levenshtein distance (using 0.85 
as a threshold), can enable the identification of potential antigen-driven selection pressures (Fig 2G). Clustering could be 
performed across all sequences or grouped by categorical variables, such as patient samples. Moreover, scRepertoire 
supports exporting clustering networks as igraph objects [17], facilitating integration with network-science-based analytical 
tools.

These analyses illustrate the breadth of scRepertoire’s capabilities for immune repertoire analysis. Additional analy-
ses across several pathological states are available in S2 and S3 Figs. By integrating sequence-level insights with func-
tional and diversity metrics, scRepertoire provides a robust framework for studying immune responses in complex tissue 
environments.

Availability and future directions

scRepertoire is built within the R framework and is freely available under the MIT license. It is hosted on Bioconductor 
(https://bioconductor.org/packages/scRepertoire). Comprehensive documentation, tutorials, and source code are provided 
to support users at https://github.com/BorchLab/scRepertoire. The code and detailed methods for reproducing the ery-
thema migrans and supplemental analyses are available at https://github.com/BorchLab/scRepertoire.v2_manuscript.

Future development plans for scRepertoire focus on enhancing its interoperability with other immune receptor analysis 
tools. Improved compatibility will encourage custom extensions and collaborative tool development, fostering the growth 
of related packages such as ApackOfTheClones [8] and DandelionR [10]. These integrations aim to streamline workflows 
for users analyzing complex single-cell immune repertoires.

Another key development area is incorporating advanced statistical methods and machine learning applications 
within scRepertoire and its compatible extensions. These enhancements will allow the uncovering of deeper insights into 
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immune repertoire dynamics, predict immune responses, and identify biomarkers for clinical and research purposes. 
Many of these areas are active in terms of research and development (reviewed in [18]). In the long term, scRepertoire’s 
framework should be extended to accommodate multi-omics integration. For example, combining immune repertoire 
data with spatial transcriptomics or proteomics could provide a more comprehensive picture of immune responses, such 
as the interaction of adaptive immune cells with the microenvironment (spatial) or high throughput antigen discovery 
(proteomics).

Supporting information

S1 Table.  Summary of capabilities of scAIRR-seq analysis software. Check marks equate to supported functionality 
for single-cell sequences. PHYLO/SHM, Phylogenetic and somatic hypermutation. *Immunarch supports PHYLO/SHM for 
non-single-cell formats. **VDJVIEW has feature differentiation for BCRs versus TCRs, however no apparent method for 
calling BCR clonotypes for BCRs beyond strict sequence-based methods.
(DOCX)

S2 Table.  Comprehensive summary of addition and changes to exported functions in scRepertoire v2. 
(DOCX)

S1 Fig.  Benchmarking execution time and memory usage across single-cell immune profiling pipelines. A. 
Median execution time (in seconds) across 10 independent runs for each pipeline, evaluated on datasets ranging in size 
from 2000 to 1,024,000 cells. B. Median memory usage (in megabytes) across 10 independent runs for each pipeline, 
evaluated on the same dataset sizes. Pipelines include immunarch, vdjdj, scRepertoire v1 [1], and scRepertoire v2.
(EPS)

S2 Fig.  Analysis of paired PBMC and aqueous humor sampling in uveitis patient cohort. A. Schematic overview 
showing the number of enrolled patients (N = 18) and the total T-cell count (112,255) after filtering for both gene expres-
sion and TCR sequences. B. UMAP projection of all T cells, colored by broad T-cell subset annotations. C. Normalized 
mRNA expression of canonical T-cell markers overlaid on the UMAP. D. UMAP highlighting clonal expansion, with colors 
reflecting each clone’s relative abundance. E. Identification and distribution of YEIH232–240 T cells visualized on the UMAP 
(top) and quantified by cluster (bottom), illustrating enrichment of these putative pathogenic T cells in clusters 3 and 13. 
F. STARTRAC metrics for cross-tissue migration (migr), state transitions (trans), and clonal expansion (expa), shown by 
cluster.
(EPS)

S3 Fig.  Temporal profiling of T-cell responses in the draining lymph nodes following COVID19 mRNA vaccina-
tion. A. UMAP projection of 34,846 T cells from a single HLA-DPB1*04-restricted individual at four time points - days 28 
(second vaccine dose), 60, 110, and 201 - post-vaccination. B. Visualization (top) and quantification by cluster (bottom) of 
Spike167-180 -specific T cells (n = 168). C. Minimal clonal sharing of Spike167-180 -specific T cells across the four time points, 
shown by proportional distribution of each clone. D. Comparison of amino acid usage in the TCRA CDR3 region among 
Spike167-180 -specific clones versus other T cells in the draining lymph node. F. Principal component analysis of TCRA 
sequences embedded using Trex for all 34,846 T cells, separated by time point, with Spike167-180 -specific clones high-
lighted in color. The figure utilizes images from the NIAID BioArt (https://bioart.niaid.nih.gov/) repository under the CC-BY 
license.
(EPS)

S1 Text.  Supplemental methods for benchmarking analysis.  
(DOCX)
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