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ORIGINAL RESEARCH

Intratumoral T-cell receptor repertoire composition predicts overall survival in 
patients with pancreatic ductal adenocarcinoma
Vikram S. Pothuri a*, Graham D. Hogg b*, Leah Conanta, Nicholas Borcherdingb, C. Alston Jamesa, Jacqueline Mudda, 
Greg Williamsa, Yongwoo David Seoc,d, William G. Hawkinsa,e, Venu G. Pillarisettyc,f, David G. DeNardo b,e*, 
and Ryan C. Fields a,e*
aDepartment of Surgery, Washington University School of Medicine, St. Louis, MO, USA; bDepartment of Medicine, Washington University School of 
Medicine, St. Louis, MO, USA; cDepartment of Surgery, University of Washington School of Medicine, Seattle, WA, USA; dDepartment of Surgical 
Oncology, MD Anderson Cancer Center, Houston, TX, USA; eSiteman Cancer Center, Washington University School of Medicine, St. Louis, MO USA; 
fFred Hutchinson Cancer Center, Seattle, WA USA

ABSTRACT
Pancreatic ductal adenocarcinoma (PDAC) is a lethal malignancy that is refractory to immune checkpoint 
inhibitor therapy. However, intratumoral T-cell infiltration correlates with improved overall survival (OS). 
Herein, we characterized the diversity and antigen specificity of the PDAC T-cell receptor (TCR) repertoire 
to identify novel immune-relevant biomarkers. Demographic, clinical, and TCR-beta sequencing data were 
collated from 353 patients across three cohorts that underwent surgical resection for PDAC. TCR diversity 
was calculated using Shannon Wiener index, Inverse Simpson index, and “True entropy.” Patients were 
clustered by shared repertoire specificity. TCRs predictive of OS were identified and their associated 
transcriptional states were characterized by single-cell RNAseq. In multivariate Cox regression models 
controlling for relevant covariates, high intratumoral TCR diversity predicted OS across multiple cohorts. 
Conversely, in peripheral blood, high abundance of T-cells, but not high diversity, predicted OS. Clustering 
patients based on TCR specificity revealed a subset of TCRs that predicts OS. Interestingly, these TCR 
sequences were more likely to encode CD8+ effector memory and CD4+ T-regulatory (Tregs) T-cells, all 
with the capacity to recognize beta islet-derived autoantigens. As opposed to T-cell abundance, intratu
moral TCR diversity was predictive of OS in multiple PDAC cohorts, and a subset of TCRs enriched in high- 
diversity patients independently correlated with OS. These findings emphasize the importance of evalu
ating peripheral and intratumoral TCR repertoires as distinct and relevant biomarkers in PDAC.
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Introduction

Pancreatic Ductal Adenocarcinoma (PDAC) is on track to 
become the second leading cause of cancer-related death by 
2030 and remains refractory to checkpoint therapies.1,2 Despite 
poor efficacy of T-cell-directed immunotherapies in PDAC, 
T-cell infiltration and neo-antigenicity appear to be predictors 
of outcomes.3,4 This suggests that the composition of the T-cell 
receptor (TCR) repertoire could also predict outcomes and 
perhaps be used to identify patients who could benefit from 
checkpoint inhibitors. Multiple studies have analyzed intratu
moral TCR repertoires using TCR clonality or its inverse, 
diversity.5 High diversity indicates a high number of unique 
TCRs that are evenly distributed, while high clonality indicates 
a disproportionate expansion of a subset of TCRs.5,6 Across 
multiple cancer types, including melanoma, lung, and breast, 
elevated TCR diversity is associated with increased overall 
survival (OS).7 However, in melanoma, patients with low 
TCR diversity (high clonality) prior to treatment demonstrate 
an improved response to PD-1 blockade and longer progres
sion-free survival.6–8 These studies suggest that the ideal TCR 

repertoire may vary by cancer type and treatment modality. In 
60 PDAC patients, long-term survivors had a more diverse 
intratumoral TCR repertoire than short-term survivors.3 

However, this was demonstrated in the absence of controlling 
for T-cell abundance or clinical characteristics.3 We therefore 
sequenced the complementarity determining region 3 (CDR3) 
of peripheral blood and tumor-infiltrating TCRs to better 
understand whether repertoire diversity predicts OS in 
PDAC. Our analysis revealed that across three cohorts of 
patients with PDAC, intratumoral TCR diversity was 
a stronger predictor of OS than T-cell abundance, suggesting 
that a diverse repertoire with broad specificity may play a more 
significant role in determining patient outcomes than sheer 
intratumoral T-cell abundance.

The CDR3 region of the TCR-beta chain is a unique barcode 
for the specificity of a particular T-cell. Repertoire diversity 
provides insights into the global adaptive response; however it 
is difficult to draw conclusions about specificity to conserved 
tumor antigens. Novel tools have emerged to better predict 
both the antigen specificity of a particular CDR3 sequence
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(NetTCR), and to group CDR3 sequences by structural motifs 
(GLIPH2, TCRdist3, TESSA).9–15 Structurally-related CDR3 
sequences may bind the same peptide-major histocompatibility 
complex (p-MHC). The TCR repertoire is vast, with ~ 108 

distinct rearrangements in any individual, making it rare to 
observe shared clonotypes.16,17 Motif-based algorithms such as 
GLIPH2 and TCRdist3 can identify highly similar but non- 
identical “metaclusters” of TCR-beta sequences with shared 
specificity.18,19 To investigate the relationship between TCR 
diversity and repertoire composition, we employed a novel 
technique of unsupervised nearest-neighbors analysis to cluster 
patients based on shared TCR specificity.10 Our analysis iden
tified a cluster of patients with high intratumoral diversity and 
improved OS. The TCR repertoires of these patients were 
enriched for a set of TCRs with shared antigen specificity and 
amino acid properties that independently predicted OS in two 
additional datasets. Interestingly, these CDR3-beta rearrange
ments were more likely to encode effector memory CD8+ 

T-cells and T-regulatory (Treg) CD4+ T-cells, with the poten
tial to bind pancreas-specific autoantigens.

We present evidence that despite the relatively low muta
tional burden of PDAC, T-cell mediated anti-tumor immunity 
may still delay disease progression.20 By identifying TCR reper
toire characteristics associated with survival, we hope to help 
identify patients that may benefit from T-cell-directed 
therapies.

Methods

Study population

Washington University in St. Louis (WashU): 162 patients 
with PDAC, treated at Siteman Cancer Center (2011–2019) 
were included. Tumor and peripheral blood mononuclear 
(PBMC) samples were taken for 122 patients, and for 40 addi
tional patients, only PBMC samples were taken. Ten patients 
were excluded due to missing data, yielding 152 patients with 
PBMC and tissue and 116 patients with tissue only. University 
of Washington (UW): Previously published clinical and 
immunosequencing data was accessed via collaboration.21 

The cohort included 54 patients with resected PDAC and 
three were excluded due to missing data, yielding 51 with tissue 
data. The Cancer Genome Atlas (TCGA): RNA-seq data was 
available for 171 patients from the PAAD cohort. Clinical data 
were downloaded from the TCGA database. Nine were 
excluded due to missing data, yielding 162 patients with RNA- 
seq data.22 MD Anderson (MDA): 5’-scRNA-seq and clinical 
data was available for seven patients with PDAC.23

TCR repertoire data processing and analysis

UW and WashU: UW and WashU cohorts were sent to 
Adaptive Biotechnologies, genomic DNA was extracted, and 
immunosequencing of the CDR3 regions of TCR-beta chains 
was performed using the immunoSEQ Assay. Data is available 
on the Adaptive Biotechnologies Portal. WashU ImmunoSEQ 
data was converted to the VDJTools clonotype table,24 filtered 
to remove nonfunctional clonotypes, and analyzed with 
VDJTools diversity functions. PBMC and tissue samples were 

downsampled (10,000 and 5,000 reads/clonotype respectively) 
to account for the differential depth of sequencing. Nine tissue 
samples were excluded due to low clonotype counts. To verify 
the VDJTools analysis, we utilized a model created by Bortone 
et al. that produces corrected diversity estimates.6 The predict_
true_entropy_from_counts routine was used to calculate True 
entropy.

TCGA: TCR CDR3 sequences were extracted from NCI 
GDC Data Portal PDAC bulk RNAseq data with the MiTCR 
package.22 Twelve samples were excluded due to low CDR3- 
beta clonotype counts, yielding 150 samples for analysis.

TCR metacluster analysis and unsupervised clustering

TCR distances were then computed between expanded intra
tumoral clones (productive frequency > 0.1%) representing the 
‘centroids’ and all other intratumoral clones with the python 
tcrdist3 package (v0.2.0).10 A TCRdist radius of 15 was used as 
a cutoff. TCR distances are calculated based on a weighted 
BLOSUM62 amino acid substitution matrix weighted 3× 
toward the CDR3 junction residues. CDR1, CDR2, and 
CDR2.5 residues are also incorporated into the model and 
are inferred from the VDJ usage.10 Resulting metaclusters 
were used as the features of a sparse matrix, containing the 
sum of the productive frequency of rearrangements within the 
TCRdist radius by patient. The sparse matrix was processed as 
a single-cell-experiment.25 Data were log normalized by multi
plying by 106 and taking the natural log of the value + 1. 
Variable features were selected (p value < 0.25), scaled, and 
used for principal components analysis (scater package: 
v1.1.8).26 The first 40 principal components were used to gen
erate a K-nearest-neighbors map, (k = 50). Clustering was per
formed with the igraph (v1.2.6) implementation of the Louvain 
algorithm. Dimensional reduction was performed with the 
R implementation of the UMAP algorithm using the first 6 
principal components as determined by elbow plot.27

TCR dimensional reduction with TESSA autoencoder

Amino acid sequences for CDR3-beta sequences were input 
into the Briseis Autoencoder to generate TCR embeddings.11 

In brief, a matrix of five amino acid properties or Atchley 
factors multiplied by the length of the CDR3 rearrangement 
was dimensionally reduced with a neural network to a single 
vector of length 30, or the TCR embedding. This 30-variable 
embedding was used to plot TCR relationships with the python 
implementation of the UMAP algorithm with 100 neighbors 
(umap-learn: v0.5.2). TESSA subsets were identified using the 
python density-based clustering algorithm DBSCAN (hdbscan: 
v0.8.28).

Single cell RNAseq analysis

Single Cell 5’ FASTQ files were aligned with cellranger v6.1.2 to 
map whole transcriptome and VDJ sequences using the 
GRCh38–2020 and GRCh38-alts-ensembl-7.1.0 references 
provided by 10× Genomics. Filtered feature barcode matrices 
were processed with Seurat v4.2.0. Barcodes with fewer than 
200 features or more than 10% mitochondrial genes were
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removed. Counts were normalized with the sctransform func
tion (v0.3.5).28 T-cell states were defined with the ProjecTILs 
package (v3.0.1).29

TCR – p-MHC specificity prediction

CDR3-beta rearrangements were queried against the IEDB 
database of known TCR-p-MHC interactions (accessed 2/10/ 
23). CDR3-beta similarity was calculated with the TCRmatch 
algorithm, which utilizes a k-mer based comparison of two 
sequences, scoring each position with a BLOSUM62 amino 
acid substitution matrix.13 A significance cutoff of 0.97 was 
used.

Statistics

Cohorts were compared in Table 1 with chi-squared and 
ANOVA. The tissue samples from the WashU cohort were 
combined with the UW cohort. Each cohort was divided into 
“Upper Quartile” and “Lower 3 Quartiles” based on True 
entropy. Fraction T-cells of nucleated cells is a metric provided 
by Adaptive Biotechnologies that quantifies the relative fre
quency of T-cells among nucleated cells. Each cohort was 
divided into “Above Median” and “Below Median” based on 
the fraction of T-cells. Cox proportional hazards models were 
used to compute hazard ratios (HR) and 95% confidence 
intervals (CI). Overall survival (OS) was defined as time 
between surgery and death or last follow-up if alive. The multi
variable regressions were adjusted for factors that affect both 
TCR diversity and survival, including age, nodal status, neoad
juvant therapy, and fraction T-cells (when available). The pro
portional hazards assumption was satisfied for all models. The 
Kaplan – Meier method was used to generate survival curves 
with the log-rank test for statistical significance. Two-sided 
p values < 0.05 were considered statistically significant and 
false discovery rate correction was used for multiple compar
isons. A beta-binomial model was used for differential analysis 
of metacluster abundance between patient clusters (FDR 
<0.25) due to the inflation of zero values in TCR sequencing 
data (corncob: v0.3.1). In brief, metacluster cumulative 

productive frequency was multiplied by 1 × 106 and treated as 
‘Taxa’ in a differential model controlling for the effects of 
cluster identity on dispersion. Statistical analysis was per
formed with R v4.2.2 or Python v3.8.5.

Study approval

Tumor and blood samples were obtained from patients treated 
at Washington University School of Medicine in St. Louis, after 
patients signed written informed consent. Electronic medical 
records were accessed under the Institutional Review Board 
(IRB) approved protocol (201108117). This study adheres to 
the ethical standards established by the Declaration of Helsinki.

Results

TCR diversity is increased in peripheral blood compared to 
tumor

Few studies have comprehensively analyzed the composition of 
the TCR repertoire within human PDAC.3,21,30,31 To address 
this gap, we sequenced the CDR3-beta region in tumor and/or 
peripheral blood samples from 152 PDAC patients (WashU). 
Of the 152 patients, all included PBMC data and 116 included 
matched tumor-PBMC data. These pairs enabled a comparison 
of peripheral and intratumoral repertoires. Diversity accounts 
for two qualities: ‘richness’ (number of unique clonotypes) and 
‘evenness’ (distribution of clonotypes).5,6 We initially used the 
Shannon-Weiner index, which reflects richness and evenness, 
and the Inverse Simpson index, which reflects evenness.5,6 

Importantly, the principle of evenness provides insight into 
clonal expansion of TCRs, with higher levels of evenness cor
responding to reduced clonal expansion. To accurately com
pare diversity metrics among patients with variable sequencing 
depth, we used down-sampling. Eight tissue samples fell below 
the down-sample threshold and were removed from this ana
lysis. Additionally, we employed “True entropy” which is 
adjusted for disparities in read count, obviates the need for 
down-sampling, and enables diversity comparisons across 
cohorts.6 As expected, TCR diversity in PBMC was

Table 1. Clinical and pathologic characteristics of pancreatic ductal adenocarcinoma cases according to patient cohort.

Patient Cohort
Characteristicsa TCGA (n = 150) UW (n = 51) WashU (n = 152) Pb

Sex 0.652
Female 67 (45%) 19 (37%) 65 (43%)
Male 83 (55%) 32 (63%) 87 (57%)

Mean age ± SD (years) 65.5 ± 11.1 63 ± 9.9 66.5 ± 10.3 0.116
Nodal Status 0.002

Negative 40 (27%) 26 (51%) 41 (27%)
Positive 110 (73%) 25 (49%) 111 (73%)

Mean Survival± SD (days) 521.4 ± 424.4 1421. 1 ± 1057.3 852.5 ± 699.4 <0.001
Survival Group <0.001

PO 4 (3%) 0 (0%) 5 (3%)
ST 29 (19%) 1 (2%) 24 (16%)
MT 39 (26%) 25 (49%) 47 (31%)
LT 13 (9%) 25 (49%) 37 (24%)
s 65 (43%) 0 (0%) 39 (26%)

aPercentage indicates the proportion of patients with a specific clinical or pathologic characteristic among patients in each cohort. bChi-squared 
test used for categorical variables (with continuity correction) and regular ANOVA used for continuous variables. PO perioperative (≤3 months), 
ST short-term (>3 months and <1 year), MT medium-term (≥1 year and ≤3 years), LT long-term, S surviving (surviving, but <3 years). SD 
Standard Deviation.
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significantly greater than within tumor, likely reflecting the 
greater number of naïve T-cells in circulation and the greater 
total number of T-cells (Figure 1(a–c)).31 There was concor
dance among the three metrics, suggesting that True entropy 
eliminates the need for down-sampling and would allow com
parisons across cohorts and the formation of composite 
cohorts (Figure 1(a–c)).

Long-term survivors have increased TCR repertoire 
diversity within the tumor but not in PBMC

To investigate a relationship with OS, we assigned patients to 
survival groups based on previously published cutoffs: Short 
Term (ST), Medium Term (MT), Long Term (LT), 
Perioperative (PO), Survivors (S).3 We hypothesized that LT 
survivors would have decreased diversity, indicative of clonal 
proliferation of tumor-reactive T-cells.32,33 We compared the 
same diversity metrics across survival groups in both PBMC 
and tumor samples. Overall ANOVA testing revealed signifi
cant differences in intratumoral TCR diversity in tissue with all 
three indices (Figure 1(d–f)). Unexpectedly, pairwise t-tests 
with false discovery rate (FDR) correction showed significantly 
greater True entropy in LT survivors compared to MT survi
vors and significantly greater inverse Simpson index (more 
evenly distributed TCRs) in LT survivors compared to ST 
survivors (Figure 1d-f). There were also trends toward 
increased True entropy and Shannon Wiener index in LT 
survivors compared to ST survivors. Furthermore, the one 
hundred TCRs with the highest cumulative productive fre
quency made up less of the overall repertoire in LT survivors 
compared to ST and MT survivors (Figure S1). This corrobo
rates the difference in inverse Simpson index in LT compared 
to ST survivors and suggests that intratumoral repertoire diver
sity is associated with OS. Interestingly, we observed no differ
ence in the three diversity metrics in PBMC samples Figure 1 
(g–i). Additionally, we observed no significant variation in 
overlap between peripheral and intratumoral repertoires 
based on survival groups (Figure S2). This suggests that the 
composition of the intratumoral TCR repertoire may be 
a better predictor of outcomes than the peripheral repertoire 
and that increased intratumoral TCR diversity may be asso
ciated with more favorable outcomes. However, it is crucial to 
determine whether TCR diversity is an independent prognostic 
factor rather than a reflection of other patient characteristics.

TCR repertoire diversity decreases with age but is not 
affected by neoadjuvant therapy, stage, or grade

Increased age has been associated with both poorer outcomes 
and reduced TCR repertoire diversity, likely secondary to thy
mus involution and accumulation of clonally expanded mem
ory T-cell subsets.17 In PBMC and tissue, there was 
a significant negative correlation between age and TCR diver
sity (Figure S3a-b).

We also hypothesized that tumor stage, grade, and neoad
juvant therapy may shape the TCR repertoire. In PBMC and 
tissue, there was no significant difference in either estimated 
T-cell fraction or TCR diversity when patients were divided by 
stage (Figure S4a-b) and only a difference in TCR diversity in 

tissue when divided by grade (Fig. S5a-b). A sizable fraction of 
patients received neoadjuvant therapy (68 (44.7%) PBMC, 54 
(46.5%) tissue). Patients were either assigned to neoadjuvant 
chemotherapy (Chemo), chemo-radiation (Chemo+Rad), or 
no neoadjuvant therapy (None). In PBMC, we observed 
a significant difference in TCR diversity across these three 
groups, but pairwise comparisons were nonsignificant (Figure 
S6b). In tissue, there was no significant difference in TCR 
diversity across these three groups (Figure S6b). There were 
also no overall differences in T-cell abundance in either PBMC 
or tissue with treatment (Figure S6a). Due in part to the 
heterogeneity of neoadjuvant regimens, further research is 
needed to assess this relationship.

High intratumoral TCR repertoire diversity predicts OS

In PBMC and tissue cohorts, patients were divided into diver
sity quartile groups. We again found a positive association 
between intratumoral diversity and OS, which was absent in 
the periphery (Figure S7a-b). Additionally, we observed that 
survival curves for the lower quartile and middle quartile 
groups largely overlapped, while the upper quartile diversity 
group had a significant survival advantage (Figure S7a). This 
suggests there may be a threshold of intratumoral repertoire 
diversity that is a strong predictor of outcomes. Thus, for the 
remainder of our analysis, we compared upper quartile diver
sity to all other quartiles.

For confirmation, we incorporated two additional datasets 
of intratumoral CDR3-beta sequences: a cohort with immu
nosequencing data from the University of Washington (UW) 
and a cohort with bulk-RNAseq extracted CDR3-beta 
sequences from TCGA. Due to the relatively small sample 
size of the UW cohort, we combined the UW and WashU 
cohorts for survival analysis. In this combined cohort, we 
observed a similar effect of upper quartile diversity on OS 
(Figure S7c).

To exclude the possibility that age, nodal status, neoadju
vant status or T-cell fraction were confounding the association 
between intratumoral repertoire diversity and OS, we used 
multivariate Cox regression models. We defined three cohorts: 
UW and WashU tissue, TCGA tissue, and WashU PBMC. In 
UW and WashU tissue, upper quartile intratumoral diversity 
was a strong and significant predictor of OS (HR (95% CI): 0.55 
(0.34–0.89); Figure 2(a–f). Interestingly, within the tumor, 
estimated T-cell fraction did not predict OS (Figure 2(b–f)). 
This suggests that the composition of the intratumoral TCR 
repertoire, rather than the sheer number of T-cells within the 
tumor, may be more important for anti-tumor immunity. The 
TCGA tissue data also demonstrated that upper quartile TCR 
diversity is a significant predictor of OS (HR (95% CI): 0.52 
(0.28–0.99); Figure 2(e–f)). In multiple cohorts and when con
trolling for covariates, increased intratumoral TCR diversity is 
associated with improved OS.

In contrast to the tissue datasets, in the WashU PBMC 
data, upper quartile TCR repertoire diversity did not signifi
cantly predict OS (Figure 2(c–f)). However, the estimated 
T-cell fraction was a significant predictor of OS (HR (95% 
CI): 0.66 (0.43–0.998); Figure 2(d–f)). This suggests that in 
peripheral blood, the estimated T-cell fraction could either
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Figure 1. TCR Repertoire Diversity Metrics in the WashU Cohort. A-C: comparison of matched tissue and PBMC samples (n = 108) by (a) True entropy, (b) Shannon 
Weiner index, (c) Inverse Simpson index. D-F: comparison of survival groups in tissue samples by (d) True entropy, (e) Shannon Weiner index, (f) Inverse Simpson 
index (D: LT n = 27, MT n = 39, ST n = 15; E/F: LT n = 26, MT n = 33, ST n = 15). G-I: comparison of survival groups in PBMC samples by (g) True entropy, (h) Shannon 
Weiner index, (i) Inverse Simpson index (LT n = 37, MT n = 47, ST n = 24). *7 patients had clonotype counts below downsampling threshold and were excluded from E/ 
F (A-C) ****p < 0.0001 as calculated by paired t-test. (D-I) *p < 0.05, **p < 0.01 as calculated by ANOVA for overall differences and t-test with false discovery rate 
correction for multiple pairwise comparisons. ns = not significant

ONCOIMMUNOLOGY 5



Figure 2. Multivariate cox proportional-hazards models for the UW and WashU – tissue, WashU – PBMC and TCGA – tissue cohorts. (a,b) Multivariate cox proportional- 
hazards model for UW and Wash U – tissue cohort (N = 167), using the variables: age, nodal status, neoadjuvant therapy, TCR diversity (true entropy) quartile group and 
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indicate the magnitude of the T-cell response against the 
tumor or perhaps is more reflective of global 
immunocompetence.

Unsupervised analysis defines a repertoire cohort of LT 
survivors with high diversity

As shown, intratumoral T-cell repertoire diversity is pre
dictive of OS; however, how that diversity relates to antigen 
specificities of the T-cell pool remains unknown. To 
address this, we sought to group patients by their shared 
TCR specificities. Tools like TCRdist3 have been developed 
to infer shared TCR specificity from highly diverse CDR3 
rearrangements with little overlap between individuals.34 In 
tumor, where the resolution of CDR3 sequences is lower 
than blood, it is rare to observe identical rearrangements 
between individuals. Thus, grouping highly similar TCRs 
enables a robust comparison of TCR specificity groups or 
metaclusters between patients. We define metaclusters in 
this context as groups of multiple TCR CDR3 rearrange
ments that have a high probability of reacting with the 
same p-MHC.19 We utilized TCRdist3 to identify intratu
morally expanded metaclusters.10 Expanded clones were 
defined as having a productive frequency greater than 
0.1%.17 In the WashU tissue cohort, we calculated the 
TCR distances (a measure of similarity) between tissue- 
expanded clones and all other clones. Rearrangements 
found to have a low TCR distance were grouped in 
metaclusters. These metaclusters were then used to con
struct a sparse matrix (Fig. S8a). The productive frequency 
of these metaclusters, each of which consists of TCRs with 
similar predicted specificity, was used for unsupervised 
clustering, resulting in four clusters of patients 
(Figure 3a). These patient clusters are defined as groups 
of patients with shared metaclusters, where each metaclus
ter represents multiple TCRs with common specificity. 
Interestingly, Cluster 3 has significantly greater OS than 
all other clusters (Figure 3b-c). No significant differences 
were found in estimated T-cell fraction between clusters, 
indicating again that intratumoral T-cell infiltration alone is 
not a significant predictor of survival (Figure 3e). On the 
other hand, cluster 3, with the highest OS, had significantly 
increased intratumoral repertoire diversity compared to 
cluster 1, which had the lowest OS (Figure 3d). There was 
no significant difference in stage or age between patient 
clusters, and there was a nonsignificant trend toward 
a higher proportion of LT survivors in patient cluster 3 
(Fig. S8c-e). This suggests that TCRs in patients from 
cluster 3 may represent a link between a highly diverse 
repertoire and distinct antigen specificities that confer 
a survival advantage.

Patient cluster 3 contains a subset of metaclusters that 
significantly predict OS in multiple datasets

We next sought to understand which metaclusters within 
patient cluster 3 were driving the survival benefit. To perform 
differential testing on metacluster relative abundance, we 
employed a beta-binomial model (Figure 3f & S8F).35 571 
metaclusters were enriched within patient cluster 3 with 
a lenient FDR cutoff of < 0.25. We next sought to identify 
a smaller subset of these 571 enriched metaclusters with shared 
structural relationships. TCRs belonging to the same metaclus
ter are predicted to react to the same p-MHC; however, that 
does not preclude TCRs in separate metaclusters from having 
highly similar CDR3 sequences due to overlapping VDJ usage. 
To define a subset of metaclusters with shared structural 
motifs, we used the TESSA algorithm to group TCRs based 
on their amino acid properties.11 The TESSA algorithm is 
a neural-network-based autoencoder that reduces the dimen
sionality of a matrix of amino acid properties for a single TCR 
to generate a latent dimensional representation of the CDR3 
sequence.11 We ran the TESSA autoencoder on all CDR3-beta 
sequences from the WashU tissue cohort and visualized the 
resulting matrix with UMAP dimensional reduction, where 
TESSA subsets were defined by the density-based DBSCAN 
method (Fig. S9a). With this method, TESSA subsets are 
defined as groups of TCRs that have shared amino acid proper
ties. These TESSA subsets contain numerous metaclusters as 
defined by TCRdist3; however, some metaclusters may be dis
tributed across a small number of TESSA subsets. Highly 
uncommon TCRs failed to cluster with any TESSA subset 
and were removed (Figure 4a). CDR3-beta sequences belong
ing to metaclusters enriched in patient cluster 3 were then 
highlighted (Figure 4b). These highlighted TCRs were then 
merged based on metacluster identity and colored by their 
TESSA subset assignment (vertex size corresponds to TCR 
counts) (Figure 4c). Metaclusters spanning multiple TESSA 
subsets were linked by gray edges (Figure 4c). There was sig
nificant overlap between metaclusters and TESSA subsets with 
32% of metaclusters contained within one TESSA subset and 
roughly 75% of metaclusters contained in fewer than three 
TESSA subsets. No metacluster was distributed across more 
than five TESSA subsets and all but one was contained within 
four TESSA subsets (Fig. S9b-d). Additionally, on average, 82% 
of the TCRs in a given metacluster are found in a single TESSA 
subset (Fig. S9c). The patient cluster 3 enriched metaclusters 
(highlighted in Figure 4b) were separated based on their 
assigned TESSA subset. We hypothesized that by taking 
a group of TCRs with shared specificity that were associated 
with a survival advantage (metaclusters enriched in patient 
cluster 3) and separating them by amino acid properties 
(TESSA), this could reveal a smaller, core set of TCRs that 
confer a survival benefit. Thus, each subset was tested as

fraction T-cell group. Impact of upper quartile compared to lower 3 quartile TCR diversity (a) and impact of above median compared to below median fraction T-cells (b) 
on overall survival. (c,d) Multivariate cox proportional-hazards model for Wash U-PBMC cohort (N = 152), using the variables: age, nodal status, neoadjuvant therapy, 
TCR diversity (true entropy) quartile group and fraction T-cell group. Impact of upper quartile compared to lower 3 quartile TCR diversity (c) and impact of above median 
compared to below median fraction T-cells (d) on overall survival. (e) Multivariate cox proportional-hazards model for TCGA-Tissue cohort (N = 150), using the variables: 
age, nodal status, and TCR diversity (true entropy) quartile group. Impact of upper quartile compared to lower 3 quartile TCR diversity (e) on overall survival. F: hazard 
ratios for variables in the three models with 95% confidence intervals calculated with multivariate cox regression. (a–f) *p < 0.05 as calculated by multivariate Cox 
proportional-hazards model. Likelihood ratio test p value < 0.05 for all three models.
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Figure 3. Clustering of WashU tissue patients by shared TCR specificity. (a) Unsupervised clustering of WashU tissue patients into four distinct patient clusters. (b) 
Kaplan-Meier curve of overall survival by individual cluster. (c) Kaplan-Meier curve of overall survival comparing cluster 3 to pooled clusters 1,2 and 4. D-E: comparison of 
patient clusters by (d) TCR diversity and (e) estimated T-cell fraction. F: relative abundance of TCR Metaclusters in patient cluster 3 compared to pooled clusters 1,2 and 
4. (b) *p < 0.05 as calculated by log-rank test. (c) *p < 0.05 as calculated by log-rank test. HR (95% CI) calculated by univariate cox proportional hazards model. (d-e) *p <  
0.05 as calculated by ANOVA for overall differences and t-test with false discovery rate correction for multiple pairwise comparisons. (f) Calculated by beta-binomial 
regression model with significance cutoff of FDR < 0.25.
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Figure 4. Clustering of WashU tissue TCRs based on amino acid properties (TESSA). A-B: UMAP dimensional reduction of TESSA embedding on all tissue CDR3b 
sequences from the WashU tissue data set with TCRs unassigned to a cluster removed (a) and with CDR3b sequences belonging to cohort 3 enriched metaclusters 
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a univariate predictor of OS in the WashU tissue cohort. 
Productive frequency of metaclusters within each TESSA sub
set was analyzed as a continuous variable. Interestingly, TESSA 
subset 12 had the highest correlation coefficient, and was the 
only subset to meet a significance threshold after adjusting for 
multiple comparisons (Figure 4d).

Having identified metaclusters within TESSA subset 12 as 
a predictor of survival in the WashU tissue dataset, we explored 
whether these metaclusters could be used as a generalizable 
biomarker of OS. We first tested whether the TESSA 12 
metaclusters predicted survival in the WashU PBMC dataset, 
which includes an additional 36 patients that lacked tissue data. 
When patients were split by the median cumulative productive 
frequency of TESSA 12 metaclusters, high frequency signifi
cantly predicted OS (HR (95% CI): 0.60 (0.40–0.91) log-rank p  
= 0.014, Fig. 4e). The distribution of TESSA 12 cumulative 
productive frequency was similar in PBMC and tissue, but 
the mean productive frequency is higher in tissue compared 
to PBMC (0.34% vs. 0.16%, p = 0.01, Fig. S10a-c). Taken 
together this indicates that the TESSA 12 metaclusters could 
represent a clinically relevant tumor enriched subset of TCRs.

We next used the UW tissue dataset to corroborate the 
prognostic value of TESSA 12 metacluster frequency. 
Although this is a small dataset (n = 51), making survival 
analysis difficult, when we identified matched TESSA 12 
metaclusters in the UW tissue dataset (TCRdist radius < 16) 
and stratified patients based on productive frequency, we again 
found that TESSA 12 metaclusters were predictive of OS (p =  
0.046, Figure 4f). Both the hazard ratio and Pearson correlation 
with OS trended toward significance (HR (95%CI): 0.48 (0.23– 
1.002) R = 0.24, p = 0.086) (Figure 4f and S11a). These results 
were not attributable to differential intratumoral T-cell abun
dance as the high-frequency TESSA 12 group had 
a significantly reduced estimated T-cell fraction (Fig. S11b). 
Here we have shown that a group of TCRs with shared speci
ficity and amino acid properties that are found within patients 
with diverse TCR repertoires can be used as a biomarker in 
both blood and tissue to predict OS in PDAC.

TESSA 12 metaclusters contain a higher frequency of 
autoreactive effector CD8+ T-cells

Having identified a set of metaclusters of interest, we next 
investigated their antigen specificity and transcriptional iden
tity. We employed a newly published dataset from MD 
Anderson (MDA) of 5-prime single-cell sequenced sorted 
CD3+ tumor-infiltrating T-cells from patients with resectable 
PDAC.23 5-prime single-cell RNA sequencing includes the 
CDR3-beta region, permitting the union of TCR specificity 
data with transcriptomic profiles. We used TCRdist3 to identify 
CDR3-beta rearrangements predicted to have the same 

specificity as TESSA 12 metaclusters. The utility of TCR dis
tances, rather than exact rearrangements to determine shared 
specificity was evident, as we were able to identify six metaclus
ters shared among all three PDAC tissue datasets (WashU, UW 
and MDA) (Figure 5a). In contrast, no identical clones were 
shared among all three datasets (Fig. S11c). Of the six shared 
metaclusters, five had a similar start sequence of CASS 
(Figure 5b). Additionally, 80% of the sequences contained the 
TRBJ1 segment, with the remaining sequences containing 
TRBJ2, both of which end in polar Threonine or Tyrosine 
residues (Figure 5b). We next inferred the T-cell identities in 
the MDA dataset using the ProjecTILs package to map the 
transcriptomes onto a reference dataset (Figure 5c).29 TESSA 
12 metacluster matched T-cells were then highlighted on the 
UMAP (Figure 5d). Interestingly, when comparing the identi
ties of all MDA sequenced T-cells with the subset of TESSA 12 
metacluster T-cells, there was a significant enrichment of CD8+ 

effector memory T-cells (p = 0.046) and a reduction in CD8+ 

naïve-like T-cells (p = 0.021 Figure 5e). This suggests that 
TESSA 12 CD8+ T-cells tend to be less naïve and more acti
vated, characteristic of a tumor-reactive T-cell population. 
Among CD4+ T-cells, there was an expansion of Tregs (p  
= .009 Figure 5e). Tregs can be a negative prognostic factor, 
as they function to enforce self-tolerance by dampening poten
tially harmful adaptive immune responses to autoantigens or 
commensal pathogens.36 However, there are conflicting 
reports as to whether Tregs are negatively or positively asso
ciated with OS in PDAC patients.37,38 The expansion of Tregs 
in TESSA 12 metaclusters, suggests that these TCRs may have 
the capacity to react with self. We therefore assessed the anti
gen specificity of the six TESSA 12 metaclusters shared across 
the three cohorts (Figure 5a). We utilized the TCRmatch algo
rithm through the IEDB database, which queries CDR3-beta 
sequences against a database of known TCR – p-MHC 
interactions.39 Sequences from all six shared metaclusters 
were submitted, and a confidence cutoff of 0.97 was used as 
suggested by the initial publication.13 In two of the six 
metaclusters, we identified TCRs with known autoreactivity 
to beta islet-derived proteins. Specifically, metacluster #5616 
contained a TCR with reactivity to an insulin peptide, while 
metacluster #6144 contained a TCR with reactivity to Zinc 
Transporter 8a (SLC30A8), both of which are expressed in 
the endocrine pancreas and associated with Type 1 Diabetes 
(Figure 5f).40,41 The CDR3 sequence specific to the insulin 
peptide was predicted to react with HLA-DQB1 *03:02, 
a heterodimer of MHC class II recognized by CD4+ T-cells. 
As predicted, one of the T-cells within metacluster #5616 was 
assigned as a Type 1 CD4+ T helper cell (Th1), suggesting that 
a T-cell specific to an insulin peptide could bind antigen- 
presenting cells, proliferate, and produce inflammatory IFNγ. 
While negative in most circumstances, an autoimmune

highlighted (b). (c) Highlighted TCRs in (b) belonging to a given metacluster within the same TESSA subset were collapsed into vertices and those belonging to 
a matched metacluster in different TESSA subsets were connected by gray lines (vertex size corresponds to TCR count). TCRs not present in metaclusters enriched in 
patient cluster 3 (highlighted in b) are excluded from this panel and subsequent analysis. (d) Metaclusters from (b) and (c) were separated based on TESSA subset and 
tested as a correlate of overall survival in the WashU tissue cohort. (e) Kaplan-Meier curve of overall survival comparing patients with high frequency of TESSA 12 
metaclusters (above median) vs. low frequency (below median) in the WashU PBMC cohort. (f) Kaplan-Meier curve of overall survival comparing patients with high 
frequency of TESSA 12 metaclusters (upper quartile) vs. patients with low frequency (lower 3 quartiles) in the UW tissue cohort as determined by TCR distances. (d) *p <  
0.05 as calculated by log rank or Spearman correlation with Bonferroni correction for multiple comparisons. ns = not significant (e,f) *p < 0.05 as calculated by log-rank 
test. HR (95% CI) calculated by univariate Cox proportional hazards model.
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signature may be of benefit in the context of malignancy. The 
majority of Tregs were found within metacluster #5596, which 
unfortunately we were unable to match with a cognate p-MHC. 
However, the sheer abundance of Tregs emphasizes the 

autoimmune signature within TESSA 12 metaclusters. Most 
T-cells within metacluster #6144 were assigned as CD8+ effec
tor memory T-cells, which are capable of binding with the 
predicted HLA-A *02:01. These cytotoxic CD8+ T-cells could

Figure 5. T-cell identity and TCR specificity in metaclusters of interest. (a) Euler plot depicting overlap of TESSA 12 metaclusters between patient cohorts. (b) consensus 
amino acid sequence of metaclusters shared by WashU tissue, UW tissue and MDA. (c,d) Inference of T-cell identities in MDA dataset based on mapping of scRNA-seq 
transcriptomes to a reference dataset (c) with T-cells bearing TCRs from TESSA 12 metaclusters highlighted (d). (e) Comparison of T-cell subset frequencies in all tumor- 
infiltrating T-cells (left, n = 7 patients) and T-cells from TESSA 12 metaclusters (right). (f) predicted specificity of two of the six shared metaclusters from (a) determined 
with TCRmatch and the IEDB database with a significance cutoff of 0.97. (e) *p < 0.05, **p < 0.01 as calculated by Fisher’s Exact Test
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directly engage and kill pancreatic islet cells expressing 
SLC30A8. Perhaps, these effector memory CD8+ T-cells are 
resident within the pancreas and are activated as bystanders 
during carcinogenesis. Here we describe a subset of intratu
moral T-cells enriched in multiple PDAC datasets that are 
a positive prognostic factor for OS and are predicted to react 
against pancreas-specific autoantigens.

Discussion

Herein we describe the relationship between intratumoral and 
peripheral TCR repertoires with survival in patients with pan
creatic cancer. We rigorously analyzed TCR sequencing data 
from three independent cohorts of patients. Intratumoral 
T-cell diversity was consistently predictive of OS when con
trolling for T-cell abundance and clinical characteristics. While 
studies have suggested this relationship without controlling for 
additional variables, to our knowledge this is the first report 
linking intratumoral TCR diversity to OS independent of T-cell 
abundance and in multiple cohorts.3 This adds to a body of 
evidence that PDAC may not be a ‘cold’ tumor and that despite 
the lack of success of checkpoint therapies, there may be 
a prominent role for T-cells in limiting cancer 
progression.3,4,42 Additionally, we find that increased abun
dance of T-cells within the tumor does not independently 
predict patient outcome, which emphasizes that not all 
T-cells contribute to anti-tumor immunity.43 This is 
a differing result than has been previously reported, which 
could be attributable to the method of measurement (immu
nohistochemistry vs. estimated fraction of Total Reads).44 

However, even previous studies have only shown a weak cor
relation with total T-cell count, and a very strong correlation 
with Granzyme+ CD8+ T-cells, highlighting that the composi
tion of the intratumoral T-cell compartment has a significant 
impact on patient outcome.3,44

T-cell abundance in peripheral blood was a positive prog
nostic factor, while repertoire diversity failed to correlate with 
OS. This inverse finding may suggest that the composition of 
the peripheral blood T-cell compartment is skewed by 
a multitude of previous antigenic exposures and is more reflec
tive of an individual’s antigenic history rather than a distinct 
anti-tumor repertoire. The observation that the abundance of 
T-cells within peripheral blood correlated with OS may be 
more indicative of an immunocompetent individual as 
opposed to a patient with globally depressed lymphocyte 
counts.

A limitation of many TCR studies that employ diversity 
statistics is the difficulty in linking a summary metric to 
distinct CDR3 identities and specificities. We utilized 
a novel method to bridge this divide. Patients were clustered 
based on shared TCR specificity, thereby aggregating 
patients by their ability to target similar antigens. This iden
tified a patient cluster with both significantly greater OS, and 
the highest mean diversity score. Within this cluster we were 
able to distinguish a subset of metaclusters that predicted OS 
both in blood and in tissue across datasets. Further research 
is needed to determine whether these metaclusters could be 
used as a biomarker to identify checkpoint or chemotherapy- 

responsive patients. It is also important to note that pre
dicted antigen specificity based on TCR-beta sequencing is 
limited to well-described antigens at this time, and in the 
absence of careful HLA-haplotyping, is rife with false- 
positive p-MHC discoveries. Despite this limitation, there 
is still value to cognate antigen analysis as the likelihood of 
true positives also increases when analyzing metaclusters 
shared across a large population of patients. Our initial 
characterization of these metaclusters demonstrates that 
within the CD8+ T-cell compartment, metaclusters tend to 
preferentially encode effector memory cells as opposed to 
naïve cells, and within the CD4+ T-cell compartment, they 
tend to encode Tregs. The increased abundance of Tregs 
suggested that these cells might react with self-antigens, 
and indeed when we inferred p-MHC specificity, we found 
that two of the clusters were capable of engaging endocrine 
pancreas-specific autoantigens associated with Type 
I Diabetes. Although diabetes is a risk factor for PDAC, it 
is possible that the presence of self-reactive T-cells within the 
pancreas could be of benefit as they may be rapidly and 
nonspecifically activated in the inflammatory TME.45,46

Many groups have examined the effects of checkpoint thera
pies on T-cell repertoire diversity.47–49 They may both reinvi
gorate exhausted T-cells and promote the emergence of new 
T-cell clones, thus reshaping repertoire composition.50,51 Our 
results suggest that a diverse intratumoral T-cell repertoire is 
associated with improved OS, particularly a repertoire that 
contains pancreas autoreactive T-cells. Further research is 
needed to determine how checkpoint therapies might affect 
these autoreactive populations, potentially reinvigorating 
a tissue resident bystander population to mediate anti-tumor 
immunity. It is our hope that the characterization of TCR 
repertoire characteristics associated with improved OS could 
identify patients that might benefit from T-cell directed immu
notherapies that have so dramatically altered the prognosis of 
other lethal malignancies.
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