Identification of novel TGF-β regulated genes with pro-migratory roles

Abstract

Transforming growth factor-β (TGF-β) signaling plays fundamental roles in the development and homeostasis of somatic cells. Dysregulated TGF-β signaling contributes to cancer progression and relapse to therapies by inducing epithelial-to-mesenchymal transition (EMT), enriching cancer stem cells, and promoting immunosuppression. Although many TGF-β-regulated genes have been identified, only a few datasets were obtained by next-generation sequencing. In this study, we performed RNA-sequencing analysis of MCF10A cells and identified 1166 genes that were upregulated and 861 genes that were downregulated by TGF-β. Gene set enrichment analysis revealed that focal adhesion and metabolic pathways were the top enriched pathways of the up- and downregulated genes, respectively. Genes in these pathways also possess significant predictive value for renal cancers. Moreover, we confirmed that TGF-β induced expression of MICAL1 and 2, and the histone demethylase, KDM7A, and revealed their regulatory roles on TGF-β-induced cell migration. We also show a critical effect of KDM7A in regulating the acetylation of H3K27 on TGF-β-induced genes. In sum, this study identified novel effectors that mediate the pro-migratory role of TGF-β signaling, paving the way for future studies that investigate the function of MICAL family members in cancer and the novel epigenetic mechanisms downstream TGF-β signaling.

Publication
In Biochimica et Biophysica Acta
Nick Borcherding
Nick Borcherding
Assistant Professor

My research includes systems immunology, single-cell sequencing technology, and computational frameworks.

Related