
OPEN

SHORT COMMUNICATION

A novel HER2 gene body enhancer contributes to HER2
expression
Q Liu1, MV Kulak2, N Borcherding3, PK Maina1, W Zhang3, RJ Weigel2,4 and HH Qi1

The transcriptional regulation of the human epidermal growth factor receptor-2 (HER2) contributes to an enhanced HER2
expression in HER2-positive breast cancers with HER2 gene amplification and HER2-low or HER2-negative breast cancers following
radiotherapy or endocrine therapy, and this drives tumorigenesis and the resistance to therapy. Epigenetic mechanisms are critical
for transcription regulation, however, such mechanisms in the transcription regulation of HER2 are limited to the involvement of tri-
methylated histone 3 lysine 4 (H3K4me3) and acetylated histone 3 lysine 9 (H3K9ac) at the HER2 promoter region. Here, we report
the identification of a novel enhancer in the HER2 3’ gene body, which we have termed HER2 gene body enhancer (HGE). The HGE
starts from the 3’ end of intron 19 and extends into intron 22, possesses enhancer histone modification marks in specific cells and
enhances the transcriptional activity of the HER2 promoters. We also found that TFAP2C, a known regulator of HER2, binds to HGE
and is required for its enhancer function and that DNA methylation in the HGE region inhibits the histone modifications
characterizing enhancer and is inversely correlated with HER2 expression in breast cancer samples. The identification of this novel
enhancer sheds a light on the roles of epigenetic mechanisms in HER2 transcription, in both HER2-positive breast cancer samples
and individuals with HER2-low or HER2-negative breast cancers undergoing radiotherapy or endocrine therapy.
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INTRODUCTION
Human epidermal growth factor receptor-2 (HER2)/Erb-B2 recep-
tor tyrosine kinase 2 is a member of the erbB-like oncogene family,
its overexpression occurs in approximately 20–30% of breast
cancers1 and is strongly associated with poor prognosis.2 HER2 has
roles in the development of HER2-positive breast cancers3,4 and
resistance to therapy in HER2-low or HER2-negative breast
cancers, in which HER2 is transcriptionally upregulated by
radiotherapy or by endocrine therapy.5–7 HER2 gene amplification
is a major mechanism for HER2 overexpression, however, higher
transcription rate of HER2 per gene copy was also observed in
HER2-amplified breast cancer cells,8–10 that is, HER2 mRNA levels
are 4- to 8-fold and 64- to 128-fold higher in HER2-overexpressing
and HER2-amplified breast cancer cells, respectively, than would
be expected from HER2 gene copy numbers.8 A run-on assay
showed SKBR3 cells displayed about two fold HER2 transcription
rate higher than in BT474 cells.11 Transcription factors such as
TFAP2,12,13 Sp1,14 PBP,15 YY1,16 ETS,17 YB-118 and EGR219 have
been shown to positively regulate HER2, whereas MYB,20 FOXP3,21

GATA4,22 PEA3,23 MBP-1,24 NOTCH and RBP-Jk25 have negative
effects. Most of these studies focused on the regulation of the
originally characterized HER2 promoter (promoter 2),14,26,27 which
has the dominant role in the overexpression of HER2 in breast
cancers28 despite of the identification of an alternative promoter
(promoter 1)29 (Figure 1a). Moreover, intron 1 enhancer when
bound by PAX2 mediates transcriptional repression of HER2 by
activated ER.5 Although these transcriptional mechanisms can

explain HER2 regulation in part, the molecular basis of the increase
in HER2 transcription in certain cancers remains unexplained.
Chromatin modifications can greatly influence transcriptional

regulation and contribute to cancer development.30 H3K4me3 and
H3K9ac, two histone marks typically associated with gene
activation, were reported to be critical for inducing HER2
transcription through promoter 2.10 WDR5, a key component of
the H3K4me3 methyltransferase complex, is essentially involved in
this process.10 However, these mechanisms are common to
general transcriptional activation. Thus, additional mechanisms
may exist and specifically contribute to HER2 overexpression. We
discovered a novel enhancer HER2 gene body enhancer (HGE) in
the 3’ gene body of HER2.
The HGE activates promoters 1 and 2 in trans., and hence the

TFAP2C-mediated transcriptional induction of HER2 expression.
This novel regulatory mechanism of HER2 transcription contributes
to the understanding of increased expression of HER2.

RESULTS AND DISCUSSION
Identification of a novel enhancer in HER2 locus
Enhancer interacts with promoter to recruit RNA polymerase II and
regulate transcription.31 Chromatin signatures such as DNase I
hypersensitivity sites32 and histone modifications, that are,
H3K4me1 and H3K27ac can be used to predict putative
enhancers.33–35 We took advantage of data from the Encyclopedia
of DNA Elements (ENCODE) Consortium36 to search for novel
regulatory element(s) that may contribute to the increase of HER2
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Figure 1. Epigenetic demarcation of the HGE. (a) Top: schematic illustration of the locations of the HER2 promoters (1 and 2), two C-terminal
transcripts (CTF611 and CTF687), and the HGE region, as well as the exon composition of HER2, based on UCSC gene annotation (GRCh37/
hg19). Bottom: enrichment of H3K4me1, H3K4me, H3K27ac and DNase I hypersensitivity signals, retrieved using the ENCODE Regulation
Super-track Settings. Colors representing different cell types are shown in the legend. Chromatin immunoprecipitation (ChIP)-PCR amplicons
are shown. NC: sequences to which nonspecific controls were generated. (b) Profile of TFAP2C binding to the HER2 gene in the indicated cell
lines, as retrieved from ChIP-seq data (GSE36351). The maximum reads on the y axis represent normalized coverage (reads per million
mapped). (c, d) TFAP2C binding and H3K4me1 and H3K27ac modification, in SKBR3 (c) and HCC1954 (d) cells, as assessed by ChIP. Enrichment
was interpreted as a percentage of input. Fold change over input normalized to NC is shown. P1, HER2 promoter 1; P2, HER2 promoter 2; EHN1,
intron 1 enhancer. Mean± s.d. was determined for three independent experiments, and the Student's t-test was used to calculate the
significance. *Po0.05, **Po0.001.
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transcription. With the ENCODE Regulation Super-track Settings,
DNase I hypersensitivity sites, H3K4me1 and H3K27ac were found
in the previously identified intron 1 enhancer5 (using the
annotation of NM_001005862); 5-kb upstream of promoter 2;
and in a previously undiscovered region within the 3’ gene body
(Figure 1a). The 3’ gene body region starts from intron 19 and
ends within intron 22 (based on NM_001289936) (Figure 1a) and,
in addition to the above-described features, it contains binding
sites for many transcription factors (including POLII, TEAD4, c-MYC
and PHF8) identified in K562 cells (Supplementary Figure 1). We
named this region as the HGE.
TFAP2C is known to positively regulate HER2 expression as it is

required for the HER2 expression in BT474 cells;37 binds to and
regulates HER2 promoter 2;12,38,39 mediates the repression of HER2
by estrogen;38 its expression is positively correlated with HER2
expression in primary breast cancers.37 We analyzed the TFAP2C
occupancy data from four cell lines (GSE36351)40 and revealed
that TFAP2C is enriched at both promoter 2 and intron 1 enhancer
in all cell lines, with stronger enrichments in HER2-amplified SKBR3
and BT474 lines than in HER2-low MCF7 cells (Figure 1b).
Importantly, TFAP2C also binds to the HGE in both SKBR3 and
BT474 cells, with the stronger occupancy in SKBR3 cells than in
BT474 cells (Figure 1b), which supports HGE as a candidate
enhancer. Chromatin immunoprecipitation of TFAP2C, H3K4me1
and H3K27ac were performed in SKBR3 cells and TFAP2C
occupancies were confirmed at promoters 1 and 2, the intron 1
enhancer and HGE (Figure 1c). H3K27ac is enriched at all four
regions, whereas H3K4me1 enrichment was only obvious at HGE
(Figure 1c). Chromatin immunoprecipitation experiments in
another HER2-amplified breast cancer cell line, HCC1954
(Figure 1d), revealed that TFAP2C was significantly enriched at
all four regions, however, its enrichments at both enhancers were
dramatically lower than at promoter 2. H3K27ac was significantly
enriched at both promoters and intron 1 enhancer, whereas,
H3K4me1 was more enriched at promoter 2 compared with a
slight increase at promoter 1 and HGE (Figure 1d). These data
support the enhancer feature of the HGE and its cell type
dependency. Importantly, a chromosome 17-wide binding data of
ERRα and PGC-1β in SKBR3 cells showed binding of ERRα to HGE
in addition to intron 1 enhancer and both promoters,41 indicating
that the HGE can recruit additional transcription factors.

The HGE enhances the transcriptional activity of HER2 promoters
We tested the ability of the HGE to regulate the transcriptional
activities of the HER2 promoters by luciferase reporter assay in
293T, SKBR3 and BT474 cells (Figure 2a). Both promoters (placed
upstream of the Luciferase gene), but not the HGE (placed
downstream of Luciferase gene), had basal activities in all cases
(Figure 2a). Notably, in all three cell lines, the transcriptional
activity associated with promoter 2 was stronger than that
associated with promoter 1 (Figure 2a), consistent with a previous
study.28 Importantly, when HGE was placed at the enhancer
position in pGL3-basic vector, that is, 5’ to 3’ downstream of the
Luciferase gene, it enhanced the transcriptional activities of both
HER2 promoters in all three cell lines (Figure 2a). As H3K4me3
presents at HGE in K562 cells and HER2 C-terminal fragment (CTF)
687 uses exon 21 to initiate its transcription42 (Figure 1a), we
engineered HGE upstream of the Luciferase gene. Only a minor
transcriptional activity was detected in 293T cells (Figure 2b),
suggesting that the transcriptional initiation capacity of HGE is
much weaker compared with that of HER2 promoters. Interest-
ingly, HGE, when placed immediately upstream of the Luciferase
gene significantly interrupted the transcriptional activities of both
promoters (Figure 2b). Meanwhile, the HGE maintained its
enhancer function for both HER2 promoters when it was inversely
inserted into the enhancer position, that is, 3’ to 5’ downstream of
the Luciferase gene (Figure 2c). Moreover, when compared with

Intron 1 enhancer, the HGE possesses similar enhancer function
for promoter 1 but slightly weaker for promoter 2 (Figure 2c).
These data support that the HGE has enhancer function
comparable with the intron 1 enhancer.

TFAP2C regulates the enhancer function of HGE
To determine the minimal enhancer element of HGE, we
generated a series of deletions including the deletion of exon
20 and intron 20 (T20), the deletion of exon 21 and intron 21 (T21)
and the deletion of exon 22 and intron 22 (T22) (Figure 3a, left
panel). The transcriptional activities of these constructs were
analyzed using the luciferase assay in 293T and SKBR3 cells. The
T21 deletion abolished the enhancement of transcriptional activity
from promoter 2 in both cell lines, whereas the T20 deletion had
no significant effect in either case, and the T22 deletion increased
the transcriptional activity of promoter 2 (Figure 3a). These data
suggested that exon 21 and intron 21 contain sequences involved
in transcriptional activation, and exon 22 and intron 22 contain
sequences involved in transcriptional repression. We next
searched for the TFAP2C consensus sequence (GCCTGAGGG)43

and identified three closest potential TFAP2C-binding sites
(GCCCCAGAG, GCCCTAGGG, GCCCAGGGC) (Figure 3b) located
within intron 21. An electrophoretic mobility shift assay using
in vitro translated TFAP2C and three oligonucleotide probes
corresponding to the three potential TFPA2C-binding sites
showed that TFAP2C binds to all the three probes (Figure 3b).
The specificity of TFAP2C binding was further confirmed by
competition of non-labeled oligos and the supershifts when
cultured with a specific TFAP2C antibody (Figure 3b). TFAP2C
silencing attenuated luciferase activity of the HGE enhancer in
both 293T and SKBR3 cells (Figure 3c) and downregulated HER2
protein levels in SKBR3 cells. (Figure 3d). These data support our
hypothesis that TFAP2C has an important role in regulating the
enhancer function of the HGE.
We next carried out genomic editing using CRISPR-Cas9 system

to determine the role of the TFAP2C-binding sites at the HGE in
the regulation of HER2 expression. Six single-guide RNAs (gRNA)
were designed to mutate or truncate TFAP2C-binding sites
(Figure 3b). SKBR3 stable cell lines with the single or combined
gRNA(s) were attempted to be established, however, only one
stable cell line with gRNA6 was achieved. It is likely that the cell
viability of SKBR3 cells depends on HER2 as knockdown HER2 in
SKBR3 cells results in growth arrest and apoptosis.44 HER2 protein
in this cell line was dramatically downregulated while cleaved
PARP was induced (Figure 3e). The genotyping of SKBR3-gRNA6
showed heterogenous genomic compositions, that is, normal HGE
region and extended mutations from the gRNA6-targeting site
(Supplementary Figure 2). This data suggest that CRISPR-Cas9
system with these gRNAs introduced additional mutations in HER2
gene and may interfere with HER2 mRNA splicing, resulting in
decreased HER2 expression and apoptosis of SKBR3 cells. In fact, a
recent study show that genomic editing of HER2 gene using
CRISPR-Cas9 system produced short truncated HER2 caused by
alternative splicing of HER2 gene and inhibits cell proliferation in
both SKBR3 and BT474 cells,45 consistent with an recent
observation of off-target mutations introduced by CRISPR-Cas9
system.46

Considering the HER2-dependent cell viability of SKBR3 cells,
the six gRNAs were transiently transfected to SKBR3 cells for 48 h
and downregulation of HER2, phospho-AKT levels at various
extents was found without inducing obvious apoptosis (Figure 3f).
These data suggest that the gRNAs targeting intron 21 containing
three TFAP2C-binding sites and the junction of exon 21 and intron
21 interfere with HER2 expression. We also examined the mRNA
levels of TFAP2C and HER2 from 12 unidentifiable HER2-positive
breast cancer samples and found positive correlation (r2 = 0.6073)
between them (Figure 3g).
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DNA methylation within the HGE inhibits the enhancer histone
modifications and is inversely correlated with HER2 gene
expression in breast cancer samples
The cell-type-dependent enrichments of TFAP2C, H3K4me1 and
H3K27ac in the HGE region (Figures 1c and d) prompted us to
investigate the underlying mechanism. DNA methylation is known
to prevent TFAP2C from accessing the target promoter,47 and
DNA methylation and certain histone modifications such as
H3K4me3 are mutually exclusive.48 Thus, we hypothesized that
DNA methylation within the HGE affects TFAP2C binding and
enrichment of the enhancer histone modifications. Analysis of
both Methyl 450 K bead array data (ENCODE/HAIB) and Reduced
Representation Bisulfite Seq data (ENCODE/HudsonAlpha)36

showed that DNA hypomethylation in the HGE region is
coincident with enrichments of transcription factors and enhancer
histone modifications in K562 cells (Supplementary Figure 1). We
performed a bisulfite sequencing assay to determine the DNA
methylation status of 28 CpG sites within the HGE. The HGE is
extensively DNA-methylated in MCF7, BT474, HCC1954, MDA-
MB-231, MCF10A and ZR-75-1 cells. It is less methylated in K562
and hypomethylated in SKBR3 cells (Figure 4a). These data
support our hypothesis that DNA methylation status is critical for
the enrichments of TFAP2C, H3K4me1 and H3K27ac in the HGE
region. The minor enrichments of TFAP2C at HGE in both BT474
and HCC1954 cells (Figures 1b and d) likely reflect the existence of
minor cell populations possessing hypomethylated HGE or the
cells toward complete establishment of DNA methylation during
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cell cycle. We next performed in vitro methylation of the pGL3-
promoter constructs with and without HGE, using the CpG
methyltransferase M.SssI49,50 and found a strong decrease of
enhanced luciferase activity of the methylated pGL3-promoters
vector with HGE compared with that without HGE (Supplementary
Figure 3).
Furthermore, we performed CRISPR-dCas9-guided specific DNA

methylation51 at the HGE region in SKBR3 cells. The six
gRNAs (Figure 3b) were inserted into pdCas9-DNMT3A-EGFP
vector and again, stable cell lines using SKBR3 cells were
failed to establish. However, we were able to collect cells from

gRNA 1 and 6 during the attempt and found that the cells
undergo apoptosis (Figure 4b, left panel). Importantly, the
HGE region became partially methylated in SKBR3 cells that
transfected with pooled gRNAs, validating the target-specific
DNA methylation by the dCas9-DNMT3A system and
indicating that the apoptosis might be caused at least partially
by loss of HER2 (Figure 4c). The dCas9-DNMT3A-gRNA 1 and
6 transient transfected into SKBR3 cells for 48 h markedly
downregulated HER2 expression, phospho-AKT, but not that of
TFAP2C and no apparent apoptosis was observed (Figure 4b,
right panel). These data suggest that the DNA methylation at the
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HGE region is important for repression of HER2 expression in
SKBR3 cells.
DNA methylation is in general strongly correlated with HER2

expression (r2 = 0.5055868) in breast cancer.52 Using the methyla-
tion database MethHC,53 we analyzed the correlation of the DNA
methylation status of 47 CpG probes and HER2 expression in 839
breast invasive carcinoma samples cataloged in The Cancer
Genome Atlas. The general inverse correlation of DNA methylation
in HER2 gene body and HER2 mRNA is stronger (r=− 0.48)
compared with that of the promoters (r=− 0.22 and − 0.19 for
promoters 1 and 2, respectively) (Supplementary Figure 4). The
correlation of the DNA methylation status of all 47 CpG probes
with HER2 mRNA expression shows strong inverse correlation
(r values ranging from − 0.291 to − 0.408) between the DNA
methylation of the four HGE CpG sites and HER2 mRNA expression
(Figure 4d). Further analysis in HER2-positive breast cancers
revealed that the DNA hypomethylation of all four HGE CpG sites
is inversely correlated with HER2 mRNA (Figure 4e). In the samples
with hypomethylated HGE region, TFAP2C mRNA is positively
associated with HER2 mRNA (Figure 4f). As discussed earlier that
ERRα also binds to HGE region and regulates HER2 expression in
SKBR3 cells,41 we also found a positive, but weaker association
between the mRNA of the coding gene ESRRA and HER2
expression. In contrast, the expression of PPARGC1B does not
show any association. These data suggest that the hypomethyla-
tion of the HGE region in breast cancers contributes to HER2
expression by gaining the accessibility of transcription factors such
as TFAP2C and ERRα.
In sum, this study unveiled a novel regulatory mechanism by a

3’ gene body enhancer contributing to the transcriptional
regulation of HER2. Further studies are sought to determine the
role of this enhancer in the transcriptional upregulation of HER2 in
HER2-low or HER2-negative breast cancers that undergo radio-
therapy or endocrine therapy.
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