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Abstract

Regulatory T cells (Tregs) are critical in
maintaining immune homeostasis under vari-
ous pathophysiological conditions. A growing
body of evidence demonstrates that Tregs
play an important role in cancer progression
and that they do so by suppressing cancer-
directed immune responses. Tregs have
been targeted for destruction by exploiting
antibodies against and small-molecule
inhibitors of several molecules that are highly
expressed in Tregs—including immune check-
point molecules, chemokine receptors, and
metabolites. To date, these strategies have
had only limited antitumor efficacy, yet they
have also created significant risk of autoimmu-
nity because most of them do not differentiate
Tregs in tumors from those in normal tissues.
Currently, immune checkpoint inhibitor
(ICI)-based cancer immunotherapies have
revolutionized cancer treatment, but the resis-
tance to ICI is common and the elevation
of Tregs is one of the most important
mechanisms. Therapeutic strategies that can

selectively eliminate Tregs in the tumor (i.e.
therapies that do not run the risk of causing
autoimmunity by affecting normal tissue), are
urgently needed for the development of cancer
immunotherapies. This chapter discusses spe-
cific properties of human Tregs under the con-
text of cancer and the various ways to target
Treg for cancer immunotherapy.
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12.1 Introduction

Regulatory T cells (Tregs) are a subset of
immunosuppressive CD4+ T cells that are critical
for peripheral immunity, immune homeostasis,
and self-tolerance. They play an important role
in many conditions and diseases by preventing
autoimmunity and overstimulation of the immune
system in response to foreign pathogens, promot-
ing resolution of inflammation, and suppressing
anti-tumor immunity (Lin et al. 2018; Sakaguchi
et al. 2010; Togashi et al. 2019). Indeed, research
over the past 20 years has shown that tumors
often have an increased density of Tregs, and
they help promote the development of the
immunosuppressive tumor microenvironment
(TME), leading to the evasion of immune system
by tumor cells and hence the consequent cancer
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progression (Chaudhary and Elkord 2016;
Togashi et al. 2019).

The existence of suppressive T cells has been
dated back as far as to the 1970s; however, the
study of these cells was limited by the lack of
markers for the identity of these suppressive T
cells (Gershon and Kondo 1970; Sakaguchi
2011). In the mid-1990s, a population of CD4+

CD25+ thymic T cells—later referred to as
Tregs—was identified to play a role in
suppressing autoimmunity (Asano et al. 1996;
Sakaguchi et al. 1995). Forkhead Box P3
(FOXP3) was found to be the main transcription
factor that drives Treg identity. In 2001,
mutations in the mouse Foxp3 gene were shown
to be the cause of lethal autoimmunity and inflam-
mation observed in the scurfy mice (Brunkow
et al. 2001). In the same year, mutations in the
human FOXP3 gene were shown to be the cause
of immune dysregulation, polyendocrinopathy,
and enteropathy X-linked (IPEX) syndrome
characterized by autoimmunity in several endo-
crine organs (Bennett et al. 2001; Wildin et al.
2001). These conditions share a similar pheno-
type that was observed in mice with depletion
of CD4+ CD25+ T cells, which led to the discov-
ery of FOXP3 expression in CD4+CD25+ T cells,
and that forced expression of FOXP3 in conven-
tional CD4+CD25! T cells converts them to
functionally suppressive T cells with the pheno-
typic expression of several characteristic Treg
genes such as CD25, cytotoxic T-lymphocyte-
associated protein 4 (CTLA4) and
glucocorticoid-induced tumor necrosis factor
receptor (GITR) (Fontenot et al. 2003; Hori
et al. 2003; Khattri et al. 2003). Stable expression
of FOXP3, which is achieved by demethylation
of an evolutionarily conserved motif in the
FOXP3 gene (referred to as the Treg-specific
demethylation region, TSDR), is required to thy-
mic Treg stability (Floess et al. 2007; Ge et al.
2019; Huehn et al. 2009). In mice, FOXP3 is
almost exclusively expressed in Tregs; however,
in humans both Tregs and conventional CD4+ T
cells express FOXP3 following T-cell receptor
(TCR) stimulation. As a result, the CD4+

FOXP3+ T-cell population may also contain
some activated conventional T cells (Morgan

et al. 2005; Roncador et al. 2005; Stockis et al.
2019). Demethylation of the FOXP3 TSDR is the
most distinguishing feature of human Tregs
(Stockis et al. 2019). For the identification and
isolation of functional human Tregs, neither
demethylation of the TSDR nor FOXP3 expres-
sion is suitable; a combination of surface markers
is required (Yang et al. 2019). In human, Tregs
are generally identified by—though not perfect—
the expression of CD4 and CD25 and low to no
expression of the α-chain of the interleukin-7
receptor (IL-7R; CD127) (Liu et al. 2006;
Romano et al. 2017).

12.2 Tregs in Cancer

The role of Tregs in suppressing anti-tumor
immunity was first shown by Onizuka et al. and
Shimizu et al. wherein they demonstrated that
depletion of CD25+ T cells in mice resulted in
increased tumor rejection and reduced tumor
growth. Similarly, adoptive transfer of Treg-
depleted (CD25+ depletion) splenocytes had the
same effect (Onizuka et al. 1999; Shimizu et al.
1999). The role of Tregs in human cancers has
been studied extensively and been reviewed
numerous times (Chaudhary and Elkord 2016;
Togashi et al. 2019). Tregs have been shown to
be increased in the peripheral blood and lymph
nodes of cancer patients and to accumulate in
many solid tumors where they account for
10–50% of the tumor-infiltrating CD4+ cells
(Badoual et al. 2006; Hiraoka et al. 2006; Ichihara
et al. 2003; Ling et al. 2007; Schaefer et al. 2005).
The role of Tregs in suppressing anti-tumor
immunity in humans is supported by several
studies. Ladoire et al. showed that the pathologic
complete response (PCR) to neoadjuvant chemo-
therapy in breast cancer patients was correlated
with decreased Tregs and increased CD8+

T cells. Depletion of Tregs using a previously
FDA-approved CD25-blocking antibody im-
proved the response to an experimental cancer
vaccine in metastatic breast cancer patients
(Rech et al. 2012). Transient depletion of Tregs
via an IL-2-diphtheria toxin conjugate reduced
metastatic lesions in melanoma patients (Rasku
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et al. 2008). The elevated abundance of FOXP3+

Tregs is generally associated with a poor progno-
sis in most non-mucosal-derived solid tumors
(Chaudhary and Elkord 2016; Shang et al.
2015). This association between tumor-
infiltrating Treg abundance and prognosis is par-
ticularly true when using the ratio between Tregs
and conventional T cells, where a higher ratio is
significantly correlated with a worse prognosis in
breast cancer, lung cancer, melanoma, pancreatic
cancer, and ovarian cancer (Curiel et al. 2004;
Jiang et al. 2014; Leffers et al. 2009; Sayour
et al. 2015; Tang et al. 2014; Tao et al. 2012;
Yang et al. 2006). While Tregs tend to be higher
in the peripheral blood in cancer patients, this is
not always associated with the abundance of
tumor-infiltrating Tregs (Adeegbe and Nishikawa
2013; Togashi et al. 2019). In contrast, a higher
number of FOXP3+ Tregs can be associated with
good prognosis as well, such as in gastric and
colorectal cancers (Haas et al. 2009; Salama
et al. 2009). This may be due to the role of
Tregs in suppressing tumor initiating and promot-
ing inflammation in the colon associated with
changes in the gut microbiome (Ladoire et al.
2011). Alternatively, recent studies have shown
that colorectal tumors have high infiltration of
FOXP3+ non-Tregs that are inflammatory and
associated with a good prognosis (Saito et al.
2016). Due to the difficulty of distinguishing
Tregs in human with just FOXP3 expression
(Morgan et al. 2005; Roncador et al. 2005),
immunohistochemistry staining for FOXP3 may
not be a viable method for determining the prog-
nostic value of Treg infiltration in colorectal can-
cer. In support of this, infiltration of actual
suppressive Tregs (defined by high expression
of FOXP3 and negative for CD45RA) is
associated with poor prognosis in colorectal can-
cer (Saito et al. 2016).

12.2.1 Cellular Source
of Tumor-Infiltrating Tregs

Tregs can develop within the thymus by positive
selection (thymic Tregs or tTregs) or arise from
peripheral conventional CD4+ FOXP3! T cells

following prolonged T-cell receptor (TCR) stim-
ulation in the presence of certain cytokines
(pTregs, also referred to as induced Tregs
(iTregs)) (Lee et al. 2011; Zheng et al. 2002,
2004). tTregs develop when the TCR of CD4
and CD8 double-positive cells in the thymus
have a high-affinity interaction with self-antigens
leading to the upregulation of CD25 as well as
other Treg-associated receptors such as GITR
(Burchill et al. 2008; Lio and Hsieh 2008). A
second step for the development of stable
CD25+ FOXP3+ Tregs involves IL-2 and
STAT5 signaling, leading to stable FOXP3
expression (Burchill et al. 2007; Lio and Hsieh
2008). This development process results in a
unique TCR repertoire relative to those from con-
ventional CD4+ T cells (Hsieh et al. 2006; Park
et al. 2020; Wong et al. 2007). Zheng SG group
first reported that iTregs arise from conventional
CD4+ FOXP3! T cells after prolonged TCR stim-
ulation under certain cytokine conditions, such as
in the presence of TGF-β and IL-2 (Davidson
et al. 2007; Zheng et al. 2002, 2007). Thus, iTregs
can share the TCR repertoire with peripheral con-
ventional CD4+ T cells. The stable expression of
FOXP3 and thus the development of long-lived
Tregs requires demethylation of the TSDR, which
only happens in tTregs (Floess et al. 2007; Ge
et al. 2019; Huehn et al. 2009).

Tumor-infiltrating Tregs can arise from several
different sources, conversion of tumor-infiltrating
CD4+ FOXP3! T cells, recruitment of tTregs, and
expansion of tissue-resident Tregs (Stockis et al.
2019). Studies have shown that several types of
leukemias and lymphomas could induce the dif-
ferentiation of conventional CD4+CD25! T cells
into Tregs (Deng 2018). For instance, malignant
B cells from follicular lymphoma and
non-Hodgkin’s lymphoma could induce the
expression of FOXP3 in CD4+CD25! T cells
(Ai et al. 2009; Mittal et al. 2008). Whether
conversion of conventional CD4 T cells into
Tregs occurs in human solid tumors is still debat-
able. In mice, adoptive transfer of conventional
CD4+CD25! T cells into tumor-bearing mice
leads to the conversion of some of these cells to
FOXP3+ Tregs (Valzasina et al. 2006); however,
whether this occurs in human and whether the
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conversion of conventional CD4+CD25! T cells
to Tregs is a major source of tumor-infiltrating
Tregs are unknown. Many tumor cells or other
cells with TME can express TGF-β, so it is con-
ceivable that the TME could induce the conver-
sion of conventional CD4+CD25! T cells to
Tregs. CD4+CD25! T cells and Tregs do not
seem to share the same TCR repertoire in
human and mouse tumors (Ahmadzadeh et al.
2019; Plitas et al. 2016), suggesting that tumor-
infiltrating Tregs may not arise from
CD4+CD25! T cells. Ahmadzadeh et al. found
that the clonality of tumor-infiltrating Tregs from
melanoma, gastric, and ovarian cancers had little
overlap with tumor-infiltrating or peripheral
blood conventional CD4+CD25! T cells, but
tumor-infiltrating Tregs did share clones with
their peripheral blood counterparts (Ahmadzadeh
et al. 2019). Most importantly, the TCRs from
tumor-infiltrating Tregs showed specificity to
tumor antigens and could be expanded in an
antigen-specific manner (Ahmadzadeh et al.
2019). This would suggest that tumor-infiltrating
Tregs may arise from both the recruitment and
clonal expansion of peripheral or tissue resident
tTregs; or a second explanation is that tumor-
infiltrating Tregs are able to extravasate from
tumors and enter circulation. The expansion of
tissue resident Tregs in tumors is supported by a
study that revealed the tumor-infiltrating Tregs
had a similar gene-expression pattern as normal
tissue Tregs (Plitas et al. 2016). It should be noted
that there is plasticity between specific subsets of
CD4+ T cells and Tregs, in particular between
Th17 cells and Tregs (Wan et al. 2020). It was
recently reported that Th17 cells could be
converted into suppressive IL-17+ FOXP3+ and
IL-17! FOXP3+ Tregs in the TME, indicating
that the conversion of Th17 cells into Tregs
could be an additional source of tumor-infiltrating
Tregs (Downs-Canner et al. 2017).

12.2.2 Chemokine Receptors
in Tumor-Infiltrating Tregs

The identification of chemokines and their
receptors that potentially mediate the recruitment

and retention of Tregs into the TME is an area of
active research (Stockis et al. 2019). Tumor-
infiltrating Tregs express a panel of chemokine
receptors such as CC chemokine receptor
4 (CCR4) (ligands CCL22/CCL17), CCR5
(ligand CCL5), CCR6 (ligand CCL20), CCR8
(ligand CCL1), and CCR10 (ligand CCL28).
Many studies have attempted to use these chemo-
kine receptors to explain the recruitment of effec-
tor Tregs to the TME; however, these Treg
chemokine receptors may have a more pro-
nounced role of retaining Tregs within TME
since all ligands are highly expressed within
TME as well. CCR4—working through its
ligands CCL22 or CCL17—is the best studied
chemokine signaling in Treg recruitment into the
TME. Several studies of ovarian, prostate, breast,
gastric, and bladder cancers have shown that
tumor-infiltrating Tregs and Tregs from malig-
nant ascites express CCR4 and that the ligand
CCL22, which is highly expressed in tumors by
tumor cells or macrophages, can act as a
chemoattractant for Tregs (Curiel et al. 2004;
Gobert et al. 2009; Maeda et al. 2019; Miller
et al. 2006; Mizukami et al. 2008). Recent studies
have shown that secretion of CCL5 by tumors or
cancer-associated fibroblasts can recruit the Tregs
though its receptor CCR5 in mouse models of
pancreatic adenocarcinoma, squamous cell carci-
noma, colorectal cancer, and breast cancer (Tan
et al. 2011; Wang et al. 2017; Ward et al. 2015)
and that CCL5 could recruit Tregs to metastatic
sites in the lung (Halvorsen et al. 2016). CCR6, a
known chemokine receptor shared by memory
Th1, Th2, Th17, and Tregs, was able to recruit
Tregs into the TME via macrophage-produced
CCL20 (Chen et al. 2013; Lee et al. 2017; Liu
et al. 2011; Zhang et al. 2015). CCL28 can be
induced via tumor-associated hypoxia within the
TME and plays a role in the recruitment of Tregs
though its receptor CCR10 (Facciabene et al.
2011). CCR8 was recently identified to be exclu-
sively elevated in human tumor-infiltrating Tregs
in breast cancer and several other cancer types
(De Simone et al. 2016; Plitas et al. 2016). CCL1,
expressed by Tregs, provides an autocrine signal-
ing to upregulate its own receptor CCR8 on Tregs
and STAT3-dependent upregulation of Foxp3,
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CD39, IL-10, and granzyme B (Barsheshet et al.
2017) and is a major chemotaxis factor for Tregs
in human breast cancer (Kuehnemuth et al. 2018).
CCR8 can be targeted by monoclonal antibodies
that have shown to reduce tumor-infiltrating
Tregs (Villarreal et al. 2018).

12.2.3 Mechanisms of Action
(Summarized in Fig. 12.1)

Tregs suppress effector T cells (Teff cells) via
many different actions, either in a contact-
dependent or -independent fashion. Many
co-stimulatory (OX-40, GITR, 4-1BB, etc.) or
co-inhibitory molecules (CTLA-4, PD-1, TIGIT,
LAG3, TIM-3, etc.) are constitutively expressed
on tumor-infiltrating Tregs. These co-inhibitory
receptor–ligand pairs either promote the expan-
sion of Tregs or suppress effector cells directly in
a contact-dependent manner. Most studies sup-
port the contact-dependent mechanism for both
human and mouse Tregs when using in vitro sup-
pression assay (Dieckmann et al. 2001; Jonuleit
et al. 2001; Piccirillo and Shevach 2001;
Takahashi et al. 1998; Thornton and Shevach
1998). Tregs can also secrete peptides (TGF-β,

IL-10, IL-35) or metabolize ATP to adenosine via
CD39 and CD73, which provides an immunosup-
pressive microenvironment (Su et al. 2019).
Many in vivo studies strongly support the role
of cytokines or metabolites in Teff cell suppres-
sion (Asseman et al. 1999; Belkaid et al. 2002;
Collison et al. 2007, 2009; Kingsley et al. 2002;
Lan et al. 2012; Li et al. 2007; Powrie et al. 1996).
We summarize the mechanisms of action for
Tregs in Fig. 12.1. Most of these mechanisms
were well-established in animal models with
strong genetic evidence, whereas not all
mechanisms are validated in human Tregs partic-
ularly relevant to human cancers. Here we briefly
discuss the various mechanisms of action for
Tregs and elaborate further in the next section
for those related to human cancers.

The best-studied mechanism is via the
co-inhibitory molecule CTLA-4. CTLA-4 is a
high-affinity inhibitory receptor for the
co-stimulatory molecules CD80 and CD86
expressed on antigen-presenting cells (APCs)
that otherwise bind to CD28 on Teff cells to
induce a co-stimulatory signal for T-cell activa-
tion, in conjunction with the primary activating
signal from MHC-antigen complexes binding to
the TCR on Teff cells (Ge et al. 2019; Togashi

Fig. 12.1 The immunosuppressive mechanisms by Tregs
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et al. 2019). Actually, CYLA-4-B7.1 signal also
drives Treg development (Zheng et al. 2006).
Tumor-infiltrating Tregs also express many
other co-inhibitory molecules including T-cell
immunoreceptor with Ig and ITIM domains
(TIGIT) (Kurtulus et al. 2015), Tim-3
(HAVCR2) (Das et al. 2017; Gao et al. 2012;
Sakuishi et al. 2013a), LAG-3 (CD223)
(Camisaschi et al. 2010), and PD-1 (Kamada
et al. 2019a; Lowther et al. 2016). TIGIT
competes for binding of CD155 with CD226,
preventing CD226-mediated co-stimulation of
Teff cells and can also induce the expression of
the suppressive cytokine IL-10 in dendritic cells
(DCs) (Levin et al. 2011; Yu et al. 2009). LAG-3
binds to MHCII on APCs with a higher affinity
than CD4, thus preventing antigen-specific stim-
ulation of CD4 T cells (Huard et al. 1994;
Sasidharan Nair and Elkord 2018). LAG-3 can
also induce the secretion of indoleamine
2,3-dioxygenase (IDO) from DCs which can
impair the function of Teff cells by producing
kynuremine (Ge et al. 2019; Munn and Mellor
2013). Studies have also shown that Tregs
express a large amount of cyclic adenosine
monophosphate (cAMP) which they can directly
transfer to Teff cells via gap junctions leading to
downregulation of IL-2 and decreased prolifera-
tion (Klein and Bopp 2016). These mechanisms
of suppression by Tregs require contact between
the Tregs and Teff cells or APCs, and until
recently, it was not known how Tregs come into
the proximity of Teff cells to mediate suppres-
sion. Patterson et al. found that Tregs secrete the
chemokines CCL3 and CCL4 which can actively
promote the migration of Teff cells to close prox-
imity with the Tregs to mediate suppression
(Patterson et al. 2016). It is unknown whether
tumor-infiltrating Tregs use the same mechanism
or not, but our unpublished results indicate a
common mechanism because tumor-infiltrating
Tregs express several Teff chemokines—includ-
ing CCL3, CCL4, and CXCL10—at much higher
levels than those expressed by splenic Tregs
(unpublished data).

Several contact-independent mechanisms of
suppression have also been identified. Tregs
highly and constitutively express CD25, which
is a high-affinity receptor for IL-2. IL-2 is primar-
ily produced by conventional T cells and is a
critical cytokine for the proliferation of T and B
cells. The high expression of CD25 on Tregs acts
to sequester IL-2 from conventional T cells
preventing their proliferation (Ge et al. 2019;
Yau et al. 2012). The role of sequestration of
IL-2 by CD25 in Treg suppression is supported
by in vitro studies, showing that an excess of IL-2
can overcome Treg-mediated suppression of con-
ventional T-cell proliferation (Takahashi et al.
1998; Yamaguchi et al. 2012). Tregs can also
secrete several immunosuppressive cytokines
including IL-10, TGF-β, and IL-35 (Chaudhary
and Elkord 2016; Ge et al. 2019). Tumor-
infiltrating Tregs from several human cancers
including colorectal cancer, hepatocellular carci-
noma, and pancreatic cancer can suppress the
activity of autologous T cells by secreting
TGF-β and IL-10 (Amedei et al. 2013; Kakita
et al. 2012; Scurr et al. 2014; Yi et al. 2013).
While IL-10 can inhibit DC activation, it can
activate Teff cells under certain conditions and
may not be a major mechanism of Treg-mediated
suppression (Ge et al. 2019; Ouyang and
O’Garra 2019). Tregs can also express the
ectonucleotidases CD39 and CD73 which com-
bine to convert extracellular adenosine triphos-
phate (ATP) into adenosine (Allard et al. 2020).
Adenosine can bind to the adenosine receptors
A2A and A2B, leading to increased intracellular
cAMP which downregulates IL-2 in effector T
cells (Blay et al. 1997; Klein and Bopp 2016;
Ohta et al. 2006). Co-expression of CD39 and
CD73 on human Tregs is rare, though studies
have shown that CD39 is highly expressed on
tumor-infiltrating Tregs in several human cancers
and that CD39+ cells can interact with CD73+

cells or exosomes in the TME to produce adeno-
sine (Jie et al. 2013; Schuler et al. 2014;
Sundström et al. 2016).
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12.3 Targeting Tregs for Cancer
Immunotherapy

12.3.1 Immune Checkpoints
as Therapeutic Targets
for Tregs

12.3.1.1 Cytotoxic
T-Lymphocyte-Associated
Protein 4 (CTLA-4)

Discovery of CTLA-4 and its mechanisms
of action. The Golstein group initially cloned
CTLA-4 from mouse-activated CD8+ T cells
and called cytotoxic T-lymphocyte-associated
protein 4 (CTLA-4) (Brunet et al. 1987) that
was later confirmed to be present within human
genome (Dariavach et al. 1988). CTLA-4 was
later defined as a negative regulator of T-cell
activation (Krummel and Allison 1995)—later
named as immune checkpoint—that completes
with CD28 to bind to CD80/CD86, with 20-fold
higher binding affinity than CD28 (Linsley et al.
1991). CTLA-4 knockout mice exhibited an alter-
ation in the T-cell development in the thymus and
resulted in highly proliferative and active T cells
in periphery (Tivol et al. 1995). James Allison’s
group established the suppressive role of CTLA-4
in cancer immunosurveillance in 1996 and found
that anti-CTLA-4 antibody induced a strong
antitumor immunity (Leach et al. 1996), the pri-
mary reason for which James Allison won the
Nobel Prize in Physiology or Medicine in 2018.
The connection between CTLA-4 and Tregs was
established by the Sakaguchi group in 2008,
where Treg-specific deletion of CTLA4 gene—
driven by a constitutively expressed FoxP3-
IRES-Cre—led to a similar phenotype as
germline deletion of CTLA-4. These data
established that the immunosuppressive function
of CTLA-4 is mainly through its expression
within tTregs (Wing et al. 2008). In contrast,
peripheral Treg-specific deletion of CTLA4 gene
in adult mice—driven by a tamoxifen-inducible
Foxp3-eGFP/Cre-ERT2—resulted in the expan-
sion of both conventional CD4+ T cells and
peripheral Tregs. Transcriptomic analysis further

confirmed that CTLA4 deletion led to a compen-
satory overexpression of immunosuppressive
molecules including LAG3, PD-1, IL-10, etc.,
which are essential to maintain the suppressive
phenotype of CTLA-4! peripheral Tregs
(Paterson et al. 2015).

At the molecular level, CTLA-4 is believed to be
important for counteracting the co-stimulatory
signal of CD28 to CD80/CD86 on antigen-
presenting cells, either by direct suppression of
antigen-presenting cells via CD80/CD86-
mediated signaling transduction (Onishi et al.
2008; Wing et al. 2008) or by removing surface
CD80/CD86 via trans-endocytosis (Qureshi et al.
2011). At the cellular level, CTLA-4 expression
on the Teff cells, either conventional CD4+ T
cells or CD8+ T cells, is important to limit the
priming stage for T-cell activation and prolifera-
tion within secondary lymphoid tissues. A similar
mechanism of CTLA-4 on Tregs is conceived to
be within the secondary lymphoid tissues where
CTLA-4 on Tregs inhibits APC function via
CD80/C86 binding (Onishi et al. 2008; Wing
et al. 2008). Nevertheless, CTLA-4 is not the
only—sometimes not even the major—mecha-
nism for the suppressive function of Tregs since
polyclonal T-cell activation using anti-CD3 and
anti-CD28 co-activation can be potently
suppressed by Tregs, but such in vitro system is
not involved in APC and the CD80/CD86
proteins.

CTLA-4 in cancer immunotherapy. The
James Allison group established the potential of
antagonizing CTLA-4 to activate antitumor
immunity in 1996 (Leach et al. 1996). The FDA
approved ipilimumab, a fully human anti-CTLA-
4 antibody, to treat metastatic melanoma in 2011.
This is a milestone of immune checkpoint
inhibitors. As another immune checkpoint, i.e.,
the PD-1/PD-L1, has gained more success than
targeting CTLA-4, lessons can still be learned
from the mechanism of action for ipilimumab.
We have pointed out above that CTLA-4 plays
an immunosuppressive role in tTregs which have

12 Understanding and Targeting Human Cancer Regulatory T Cells to Improve Therapy 235



been proven the major Treg populations in vari-
ous cancer types; hence, it is not surprising to find
that the efficacy of ipilimumab is positively
correlated with the reduced Treg abundance in
tumor microenvironment. Animal studies further
support that anti-CTLA-4 works on both Teff
activation and Treg depletion for its maximal
efficacy (Bulliard et al. 2013; Selby et al. 2013;
Simpson et al. 2013). One caveat of ipilimumab
therapy is the high rate of treatment-related
adverse events, and many patients receiving
ipilimumab experienced level 3 or 4 immune-
related adverse events. In the EORTC 18071
trial, five patients died of ipilimumab treatment-
related colitis, myocarditis, or multiorgan failure
associated with Guillain–Barre syndrome.
Ipilimumab is a human IgG1 antibody with
predicted deleting activity, it is likely that these
severe immune-related adverse events are the
cause of ipilimumab-mediated Treg depletion
via FC-gamma receptors (Arce Vargas et al.
2018). Tremelimumab, a human IgG2 isotype
without deleting activity, can also bind to
FC-gamma receptors and deplete Tregs (Arce
Vargas et al. 2018). Even though a recent study
argued against the role of ipilimumab on human
cancers, the sampling time (many weeks after
the last ipilimumab treatment) may miss the
point of Treg depletion from these clinical
samples (Sharma et al. 2019). The Sakaguchi
group re-engineered the Fc-portion of ipilimumab
to enhance its binding affinity to human
FC-gamma receptor IIIa, which leads to
antibody-mediated cytotoxicity (ADCC)-
mediated killing of Tregs as well as
exhausted CD8+ T cells (Ha et al. 2019). The
distinct difference of CTLA-4 expression on
Tregs versus Teff cells is that Tregs constitutively
express CTLA-4 on the surface, whereas Teff
cells only express CTLA-4 on the surface upon
activation and to a much lower level than that on
Tregs. This feature gives a window for Treg
depletion first, followed by CD8 T-cell activation
by other means such as vaccination or anti-PD-1
therapy that will be mentioned later (Ha et al.
2019).

12.3.1.2 Lymphocyte-Activation Gene
3 (LAG-3, CD223)

LAG-3 is a surface protein that is expressed by
activated CD4+ and CD8+ T cells, as well as by
Tregs. LAG-3 could be the third most promising
immune checkpoint in cancer immunotherapy
after CTLA-4 and PD-1/PD-L1. As an immune
checkpoint, LAG-3 binds to MHCII on antigen-
presenting cells (Liang et al. 2008) to block the
TCR and CD4-co-receptor-mediated signals for
T-cell activation at the priming phase of the
tumor-immune cycle. In addition, cancer cells
can produce another ligand, namely
fibrinogen-like protein 1 (FGL1), as the major
immune-inhibitory ligand to bind with LAG-3
independent of MHCII (Wang et al. 2019) and
inhibit T-cell activation at the effector phase
(Topalian et al. 2016). Elevated expression of
LAG-3 in tumor-infiltrating lymphocytes is sig-
nificantly associated with disease progression of
many human cancers (Chen and Chen 2014;
Gandhi et al. 2006; Hemon et al. 2011; Matsuzaki
et al. 2010; Shapiro et al. 2017). Many inhibitory
molecules/antibodies against LAG-3 have been
developed and showed some clinical benefit
either alone or in combination with other immune
checkpoint inhibitors (Table 12.1). In combina-
tion with anti-PD-1 therapy, anti-LAG-3
facilitates the eradication of established tumors
that are resistant to either single antibody treat-
ment by inducing an active anti-cancer immune
response (Matsuzaki et al. 2010; Woo et al.
2012). The expression of LAG-3 on Tregs is
induced upon the activation of Teff cells. Genetic
deletion of LAG3 or the treatment with anti-LAG-
3 antibody inhibits the proliferative and suppres-
sive capacities of Tregs, supporting that LAG-3 is
important for Treg-mediated immune suppression
under physiological conditions (Huang et al.
2004). The role of LAG-3 in Tregs, however,
can be reversed when Tregs are placed under
chronic inflammation such as in autoimmune dia-
betes (Zhang et al. 2017). Treg-specific deletion
of LAG-3 in non-obese diabetic mice (NOD,
autoimmune type 1 diabetic model) resulted in
Treg expansion in the islets but not peripheral
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Table 12.1 Summary of clinical trials related to tumor-infiltrating Tregs

NCT Cancer Compound Target Additional agents Phase Status
NCT02946671 Solid tumors Mogamulizumab CCR4 Nivolumab (PD-1) I Completed
NCT01626664 Adult T-cell leukemia-

lymphoma
Mogamulizumab CCR4 None II Completed

NCT00888927 Peripheral T-cell lymphoma Mogamulizumab CCR4 None I/II Completed
NCT00355472 Relapsed adult T-cell leukemia-

lymphoma and peripheral
T-cell lymphoma

Mogamulizumab CCR4 None I Completed

NCT01728805 Cutaneous T-cell lymphoma Mogamulizumab CCR4 None III Active, not
recruiting

NCT04185220 Adult T-cell leukemia-
lymphoma and cutaneous
T-cell lymphoma

Mogamulizumab CCR4 Recombinant
IL-15

I Recruiting

NCT04256018 Cutaneous T-cell lymphoma Mogamulizumab CCR4 Low-dose total
skin electron beam

II Not yet
recruiting

NCT01611142 Peripheral T-cell lymphoma Mogamulizumab CCR4 None II Completed
NCT02476123 Advanced solid tumors Mogamulizumab CCR4 Nivolumab (PD-1) I Completed
NCT00920790 CCR4+ Adult T-cell leukemia-

lymphoma
Mogamulizumab CCR4 None II Completed

NCT02301130 Advanced solid tumors Mogamulizumab CCR4 Durvalumab
(PD-1) and
tremelimumab
(CTLA-4)

I Completed

NCT04128072 Cutaneous T-cell lymphoma Mogamulizumab CCR4 Low-dose total
skin electron beam

II Not yet
recruiting

NCT02281409 Advanced and metastatic solid
tumors

Mogamulizumab CCR4 None I/II Completed

NCT03309878 Relapsed or refractory diffuse
large B-cell lymphoma

Mogamulizumab CCR4 Pembrolizumab
(PD-1)

I/II Recruiting

NCT02444793 Advanced solid tumors Mogamulizumab CCR4 Utomilumab
(4-1BB)

I Terminated

NCT02358473 Non–small cell lung cancer Mogamulizumab CCR4 Docetaxel I Completed
NCT02867007 Locally advanced or metastatic

solid tumors
Mogamulizumab CCR4 KHK2455 (IDO) I Active, not

recruiting
NCT03767582 Pancreatic adenocarcinoma BMS-813160 CCR2/

CCR5
GVAX I/II Recruiting

NCT03274804 Microsatellite stable metastatic
colorectal cancer

Maraviroc CCR5 Pembrolizumab
(PD-1)

I Active, not
recruiting

NCT03631407 Microsatellite stable metastatic
colorectal cancer

Vicriviroc CCR5 Pembrolizumab
(PD-1)

II Active, not
recruiting

NCT01736813 Metastatic colorectal cancer Maraviroc CCR5 None I Completed
NCT03838367 Metastatic triple-negative

breast cancer
Leronlimab CCR5 Carboplatin I/II Recruiting

NCT00128622 CEA-expressing malignancies Denileukin
diftitox

CD25 Tumor vaccine I Completed

NCT00847106 Advanced melanoma Daclizumab CD25 DC-based anti-
tumor vaccine

I/II Completed

NCT00082914 Metastatic melanoma and
kidney cancer

Denileukin
diftitox

CD25 None II Completed

NCT00278369 Metastatic renal cancer Denileukin
diftitox

CD25 None I Completed

NCT00425672 Breast cancer Denileukin
diftitox

CD25 None I/II Completed

(continued)
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Table 12.1 (continued)

NCT Cancer Compound Target Additional agents Phase Status
NCT00726037 Metastatic pancreatic cancer Denileukin

diftitox
CD25 None II Withdrawn

NCT03621982 Select advanced solid tumors ADCT-301 CD25-
ADC

None I Recruiting

NCT03884556 Lymphomas and solid tumors TTX-030 CD39 Pembrolizumab
(PD-1), docetaxel,
gemcitabine,
paclitaxel

I Recruiting

NCT02503774 Advanced solid tumors Oleclumab CD73 Durvalumab
(PD-1)

I Active, not
recruiting

NCT04262388 Pancreatic adenocarcinoma,
small cell lung cancer, and head
and neck cancer

Oleclumab CD73 Durvalumab
(PD-1)

II Not yet
recruiting

NCT04262375 Non–small cell lung cancer and
renal clear cell carcinoma

Oleclumab CD73 Durvalumab
(PD-1)

II Not yet
recruiting

NCT04148937 Advanced solid tumors LY3475070 CD73 Pembrolizumab
(PD-1)

I Recruiting

NCT03454451 Advanced malignancies CPI-006 CD73 Ciforadenant
(A2A receptor)
and
pembrolizumab
(PD-1)

I Recruiting

NCT03616886 Metastatic triple-negative
breast cancer

Oleclumab CD73 Paclitaxel,
carboplatin, and
durvalumab
(PD-1)

I/II Recruiting

NCT03875573 Luminal B breast cancer Oleclumab CD73 Radiotherapy and
durvalumab
(PD-1)

II Recruiting

NCT03835949 Advanced or metastatic cancers TJ004309 CD73 Atezolizumab
(PD-L1)

I Recruiting

NCT03267589 Relapsed ovarian cancer MEDI9447 CD73 Durvalumab
(PD-1)

II Recruiting

NCT03549000 Non–small cell lung cancer,
triple-negative breast cancer,
pancreatic adenocarcinoma,
ovarian cancer, renal clear cell
carcinoma, metastatic
castration-resistant prostate
cancer, microsatellite stable
colorectal cancer

NZV930 CD73 Spartalizumab
(PD-1) and
NIR178 (A2A
receptor)

I Recruiting

NCT04104672 Pancreatic adenocarcinoma AB680 CD73 Zimberelimab
(PD-1),
nab-paclitaxel, and
gemcitabine

I Recruiting

NCT02754141 Advanced solid tumors BMS-986179 CD73 Nivolumab (PD-1)
and rHuPH20

I/II Recruiting

NCT03954704 Advanced solid tumors GS-1423 CD73-
TGFB

None I Recruiting

NCT02740270 Advanced solid tumors and
lymphomas

GWN323 GITR Spartalizumab
(PD-1)

I Active, not
recruiting

NCT02697591 Advanced or metastatic solid
tumors

INCAGN01876 GITR None I/II Active, not
recruiting
(continued)
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Table 12.1 (continued)

NCT Cancer Compound Target Additional agents Phase Status
NCT03277352 Advanced or metastatic

malignancies
INCAGN01876 GITR Epacadostat

(IDO1) and
pembrolizumab
(PD-1)

I/II Active, not
recruiting

NCT03126110 Advanced or metastatic
malignancies

INCAGN01876 GITR Ipilimumab
(CTLA-4) and
nivolumab (PD-1)

I/II Active, not
recruiting

NCT01239134 Malignant melanoma TRX518 GITR None I Completed
NCT02583165 Advanced tumors MEDI1873 GITR None I Completed
NCT04335039 Glioblastoma INCAGN01876 GITR INCAGN01876

(PD-1), SRS
II Not yet

recruiting
NCT04021043 Advanced lung, chest, and liver

cancers
BMS-986156 GITR Ipilimumab

(CTLA-4),
nivolumab (PD-1),
SRS

I/II Recruiting

NCT03799003 Advanced solid tumors ASP195 GITR Pembrolizumab
(PD-1)

I Recruiting

NCT03295942 Locally advanced or metastatic
tumors

OMP-336B11 GITR None I Terminated

NCT01216436 Metastatic melanoma GITR-L-
transfected DC

GITR Anti-CTLA-4-
transfected DC

I Terminated

NCT02553499 Advanced solid tumors MK-1248 GITR Pembrolizumab
(PD-1)

I Terminated

NCT03489369 Advanced solid tumors and
lymphomas

Sym022 Lag-3 None I Active, not
recruiting

NCT02460224 Advanced malignancies LAG525 Lag-3 Spartalizumab
(PD-1)

I/II Active, not
recruiting

NCT02614833 Metastatic breast cancer IMP321 Lag-3 Paclitaxel II Active, not
recruiting

NCT02060188 Colorectal cancer BMS-986016 Lag-3 Nivolumab (PD-1) II Active, not
recruiting

NCT00351949 Metastatic renal cancer IMP321 Lag-3 None I Completed
NCT00349934 Metastatic breast cancer IMP321 Lag-3 None I Completed
NCT03252938 Advanced solid tumors IMP321 Lag-3 Avelumab (PD-1) I Recruiting
NCT03250832 Advanced solid tumors TSR-033 Lag-3 Anti-PD-1 I Recruiting
NCT03005782 Advanced malignancies REGN3767 Lag-3 REGN2810

(PD-1)
I Recruiting

NCT01968109 Non–small cell lung cancer,
gastric cancer, hepatocellular
carcinoma, renal cell carcinoma

Relatlimab Lag-3 Nivolumab (PD-1) I/II Recruiting

NCT02817633 Advanced solid tumors SR-033 Lag-3 TSR-022 (Tim-3) I Recruiting
NCT03311412 Advanced solid tumors and

lymphomas
Sym022 Lag-3 Sym021 (PD-1) I Recruiting

NCT02658981 Recurrent GBM Urelumab Lag-3 Nivolumab (PD-1) I Recruiting
NCT03607890 Advanced mismatch repair

deficient cancers
Relatlimab Lag-3 Nivolumab (PD-1) II Recruiting

NCT03538028 Advanced malignancies INCAGN02385 Lag-3 None I Recruiting
NCT00732082 Pancreatic adenocarcinoma IMP321 Lag-3 Gemcitabine I Terminated
NCT03849469 Select solid tumors XmAb22841 Lag-3-

CTLA-
4

Pembrolizumab
(PD-1)

I Recruiting

NCT04082364 HER2+ gastric/GEJ cancer MGD013 Lag-3-
PD-1

Margetuximab
(HER2)

II/III Recruiting
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Table 12.1 (continued)

NCT Cancer Compound Target Additional agents Phase Status
NCT02274155 Advanced head and neck

cancers
MEDI6469 OX40 None I Active, not

recruiting
NCT02559024 Metastatic colorectal cancer MEDI6469 OX40 None I Active, not

recruiting
NCT02315066 Locally advanced or metastatic

tumors
PF-04518600 OX40 PF-05082566

(4-1BB)
I Active, not

recruiting
NCT02528357 Advanced solid tumors GSK3174998 OX40 Pembrolizumab

(PD-1)
I Active, not

recruiting
NCT01862900 Metastatic breast cancer MEDI6469 OX40 SBRT I Completed
NCT01303705 Metastatic prostate cancer Anti-OX40 OX40 Radiation and

cyclophosphamide
I Completed

NCT01644968 Advanced cancers Anti-OX40 OX40 None I Completed
NCT02410512 Locally advanced or metastatic

solid tumors
MOXR0916 OX40 Atezolizumab

(PD-L1)
I Completed

NCT02221960 Select advanced solid tumors MEDI6383 OX40 Durvalumab
(PD-L1)

I Completed

NCT02318394 Selected advanced solid tumors MEDI0562 OX40 None I Completed
NCT02705482 Advanced solid tumors MEDI0562 OX40 Tremelimumab

(CTLA-4) and
durvalumab
(PD-1)

I Completed

NCT03241173 Advanced or metastatic
malignancies

INCAGN01949 OX40 Nivolumab (PD-1)
and Ipilimumab
(CTLA-4)

I/II Completed

NCT04215978 Advanced solid tumors BGB-A445 OX40 Tislelizumab
(PD-1)

I Not yet
recruiting

NCT03092856 Metastatic kidney cancer PF-04518600 OX40 Axitinib II Recruiting
NCT03831295 Advanced or metastatic solid

tumors
BMS 986178 OX40 SD-101 (TLR9) I Recruiting

NCT03971409 Triple-negative breast cancer PF-04518600 OX40 Avelumab (PD-1),
binimetinib
(MEK), and
utomilumab
(4-1BB)

II Recruiting

NCT03410901 B-cell non-Hodgkin lymphoma BMS 986178 OX40 SD-101 (TLR9)
and radiation
therapy

I Recruiting

NCT04198766 Locally advanced or metastatic
solid tumors

INBRX-106 OX40 Pembrolizumab
(PD-1)

I Recruiting

NCT03336606 Head and neck squamous cell
carcinoma

MEDI6469 OX40 None I Recruiting

NCT03267589 Relapsed ovarian cancer MEDI0562 OX40 Durvalumab
(PD-1) and
tremelimumab
(CTLA-4)

II Recruiting

NCT02554812 Locally advanced or metastatic
solid tumors

PF-04518600 OX40 Avelumab (PD-1) II Recruiting

NCT03636503 Follicular lymphoma PF-04518600 OX40 Rituximab
(CD20),
utomilumab
(4-1BB), and
avelumab (PD-1)

I Recruiting

(continued)

240 H. R. Kolb et al.



Table 12.1 (continued)

NCT Cancer Compound Target Additional agents Phase Status
NCT03447314 Advanced solid tumors GSK3174998 OX40 GSK1795091

(TLR4)
I Recruiting

NCT02923349 Advanced solid tumors INCAGN01949 OX40 None I/II Recruiting
NCT03758001 Advanced solid tumors IBI101 OX40 Sintilimab (PD-1) I Recruiting
NCT03217747 Advanced malignancies PF-04518600 OX40 Utomilumab

(4-1BB),
avelumab (PD-1),
and radiation

I/II Recruiting

NCT03390296 Acute myeloid leukemia PF-04518600 OX40 Avelumab (PD-1)
and azacytidine

I/II Recruiting

NCT02205333 Aggressive B-cell lymphoma MEDI6469 OX40 Durvalumab
(PD-L1),
rituximab (CD20),
and tremelimumab
(CTLA-4)

I/II Terminated

NCT01689870 Metastatic melanoma Anti-OX40 OX40 Ipilimumab
(CTLA-4)

I/II Withdrawn

NCT01416844 Metastatic melanoma Anti-OX40 OX40 None II Withdrawn
NCT03782467 Advanced solid tumors ATOR-1015 OX40-

CTLA-
4

None I Recruiting

NCT04116710 Advanced solid tumors HS-130 OX40L-
Ag
fusion

HS-110 I Recruiting

NCT03323398 Advanced malignancies mRNA-2416 OX40L
mRNA

Durvalumab
(PD-1)

I/II Recruiting

NCT03739931 Advanced malignancies mRNA-2416 OX40L
mRNA

Durvalumab
(PD-L1)

I Recruiting

NCT03894618 Advanced solid tumors and
lymphomas

SL-279252 PD1-
Fc-
OX40L

None I Recruiting

NCT04140500 Advanced solid tumors RO7247669 PD1-
LAG3

None I Recruiting

NCT03563716 Non–small cell lung cancer MTIG7192A TIGIT Atezolizumab
(PD-L1)

II Active, not
recruiting

NCT04294810 Non–small cell lung cancer Tiragolumab Tigit Atezolizumab
(PD-L1)

III Not yet
recruiting

NCT04047862 Advanced solid tumors BGB-A1217 TIGIT Tislelizumab
(PD-1)

I Recruiting

NCT04256421 Small cell lung cancer Tiragolumab TIGIT Atezolizumab
(PD-L1),
etoposide,
carboplatin

III Recruiting

NCT04262856 Non–small cell lung cancer Zimberelimab Tigit Zimberelimab
(PD-1) and AB928
(A2b receptor)

II Recruiting

NCT03628677 Advanced malignancies AB154 TIGIT Zimberelimab
(PD-1)

I Recruiting

NCT03119428 Advanced solid tumors OMP-313M32 TIGIT Nivolumab (PD-1) I Terminated
NCT00986518 Metastatic colorectal cancer Treg-depleted autologous

cell transplant
None I/II Completed
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tissues, ultimately reducing the autoimmune dia-
betes (Zhang et al. 2017). Cancer Tregs are con-
sidered to have near maximal suppressive activity
(Delgoffe et al. 2013) with a population
expressing high levels of LAG-3. Since most
clinical trials related to anti-LAG-3 antibodies
are earlier in clinical trials, there is insufficient
information as of how anti-LAG-3 antibodies
influence cancer Tregs. LAG-3+ Tregs are signif-
icantly enriched in blood from melanoma and
colon cancer patients and exhibit an effector/
memory phenotype, along with the production
of immunosuppressive cytokines TGF-β and
IL-10 (Camisaschi et al. 2010). In colorectal can-
cer, LAG-3 and TIM-3 are co-expressed in more
than 50% of cancer Tregs, along with other
immunosuppressive molecules such as TGF-β,
IL-10, and CTLA-4 (Ma et al. 2018). In addition
to classic Foxp3-positive Tregs, co-expression of
CD49b and LAG-3 identifies human regulatory
type 1 (Tr-1) T cells (Gagliani et al. 2013) that are
highly suppressive. It is anticipated that LAG-3-
targeting interventions may result in cancer-
specific Teff activation as well as Treg inhibition.

12.3.1.3 T-Cell Immunoreceptor with Ig
and ITIM Domains (TIGIT)

TIGIT was first identified as a coinhibitory mole-
cule expressed on Teff cells that gained attention
by suppressing autoimmune responses (Joller
et al. 2011; Levin et al. 2011). TIGIT binds to
co-stimulatory ligand CD155 on DCs, which
leads to the reduced production of IL-12, but
induces IL-10 production (Yu et al. 2009).
TIGIT was later found to be expressed on
human Tregs with superior immune suppression
toward Th1 and Th17 helper cells but not Th2
cells (Joller et al. 2014). TIGIT marks highly
dysfunctional CD8 T cells in tumors as well as a
highly immune suppressive subpopulation of
TI-Tregs, but genetic evidence supports that
TIGIT expression on Tregs is dominant in
suppressing antitumor immunity (Kurtulus et al.
2015). The fact that TIGIT knockout mice are
normal in development and do not develop auto-
immune diseases, in addition to the highly
immunosuppressive nature of TIGIT+ Tregs,
makes TIGIT a great candidate for Treg-based

cancer immunotherapy. Several anti-human
TIGIT antibodies have been developed and
entered early clinical trials, most of which have
negligible effect; however, the interest remains
from the pharmaceutical industry likely due to
its synergistic effects with anti-PD-1/PD-L1
blockade (Table 12.1).

12.3.1.4 T-Cell Immunoglobulin
and Mucin-Domain
Containing-3 (TIM-3)

TIM-3 is an immunoglobulin and mucin domain
family and is originally identified on CD4 and
CD8 T cells (Monney et al. 2002) with immune
modulatory function. TIM-3 is later found to be
expressed by Tregs and innate immune cells
including dendritic cells, natural killer cells,
monocytes, macrophages, and mast cells (Wolf
et al. 2020). Four ligands have been identified—
including galectin-9 (Gal-9) (Jayaraman et al.
2010), high-mobility group protein B1
(HMGB1) (Chiba et al. 2012), Ceacam-1
(Huang et al. 2015), and phosphatidylserine
(DeKruyff et al. 2010)—that mediate different
immune-modulatory function of CD4+ or CD8+

T cells. TIM-3 is expressed on tumor-infiltrating
Tregs of many cancer types, with studies showing
that TIM-3+ Tregs are more immunosuppressive
than their TIM-3! counterparts and are
co-expressing other immune checkpoints such as
TIGIT, CTLA-4, and PD-1 (Gao et al. 2012;
Kurtulus et al. 2015; Liu et al. 2018; Ma et al.
2018; Sakuishi et al. 2013b). The genetic evi-
dence of TIM-3 in the role of Tregs is lacking,
and there is no clinical evidence that TIM-3 inhi-
bition has direct impact on Treg function.

12.3.1.5 Programmed Cell Death-1 (PD-1)
PD-1 is another immune checkpoint protein that
was initially identified on active CD8+ and CD4+

T cells. Ligation of PD-L1, mainly expressed by
cancer cells or myeloid cells, with PD-1 leads to
T-cell exhaustion and dysfunction. There are
many outstanding reviews related to the PD-1/
PD-L1 axis in the field of cancer immunotherapy
(Chamoto et al. 2020; Iwai et al. 2017;
Sanmamed and Chen 2018; Zou et al. 2016).
Briefly, anti-PD-1/PD-L1 antibodies mainly
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disrupt the PD-L1 ligation, which reverses the
exhaustion phenotype of Teff cells—a process
referred to as rejuvenation. As rejuvenation
becomes the primary explanation for the mecha-
nism of T-cell activation under anti-PD-1/PD-L1
therapies, a very recent paper provides a second-
ary opinion showing that anti-PD-1 antibodies
(pembrolizumab and cemiplimab) were able to
deplete tumor-infiltrating CD8+ T-cell clones
and replace them with novel CD8+ T-cell clones
against tumor neoantigens (Yost et al. 2019). In
relation to Tregs, PD-1 was initially identified as
an intracellular protein in resting Tregs and, upon
TCR stimulation, moved to the surface of active
Tregs (Raimondi et al. 2006). The role of PD-1/
PD-L1 axis in the induced Tregs has been
reviewed recently (Gianchecchi and Fierabracci
2018) and will not be covered here due to the
irrelevance in most solid cancers. Tumor-
infiltrating Tregs consist of a significant PD-1+

population. Interestingly, limited literature points
to a role of PD-1 in Treg suppression, including
(1) in malignant gliomas where PD-1 marks dys-
functional Tregs with IFN-γ expression (Lowther
et al. 2016); (2) The Nishikawa group identified
PD-1+ Tregs in gastric cancer that were amplified
by anti-PD-1 antibody treatment, leading to the
hyperprogression of cancers upon anti-PD-1 ther-
apy (Kamada et al. 2019b); (3) similar Treg accu-
mulation also occurs in the hyperprogressive
adult T-cell leukemia/lymphoma when treated
with anti-PD-1 therapy (Rauch et al. 2019).
These data are consistent with animal models
where Treg-specific deletion of PDCD1 (gene
encoding PD-1) led to the expansion of Tregs
that are more suppressive to Teff cells (Kamada
et al. 2019b). The PD-1 and PD-L1 axis may not
be a very good therapeutic target for Treg-based
immunotherapy.

12.3.2 Co-stimulatory Receptors
as Therapeutic Targets
for Tregs

Another field of interest in cancer immunotherapy
is the agonistic activation of co-stimulatory
receptors such as GITR, OX-40, and 4-1BB.

Interestingly, TI-Tregs from human cancers pref-
erentially express these co-stimulatory receptors
at much higher levels relative to Tregs from
peripheral blood. Several studies have shown
that agonistic activation of these receptors results
in the expansion of CD8+ T cells while at the
same time eliminating/inhibiting TI-Tregs (Arce
Vargas et al. 2017; Bulliard et al. 2013, 2014). As
these co-stimulatory agonists mainly activate
CD8+ T cells (Table 12.1), and the effects on
human TI-Tregs are largely missing, we will not
cover these receptors in detail.

12.3.3 Chemokine Receptors
as Potential Therapeutic
Targets for Tregs

We have briefly discussed the roles of chemokine
receptors in the recruitment/retention of tumor-
infiltrating Tregs. Here we choose three
candidates, CCR4, CCR5, and CCR8, for further
discussion.

12.3.3.1 CCR4
CCR4 is identified as the major chemokine recep-
tor for Th2 and Tregs (Yoshie and Matsushima
2015), two CD4+ T-cell subtypes that have
tumor-promoting functions. The Zou group first
established the function of CCR4—working
through CCL22 produced by the TME—in the
recruitment of Tregs to ovarian cancers (Curiel
et al. 2004), which is further confirmed within
several other cancer types (Curiel et al. 2004;
Gobert et al. 2009; Maeda et al. 2019; Miller
et al. 2006; Mizukami et al. 2008). The major
drive to develop anti-CCR4 agents is the elevated
expression of CCR4 in mature T-cell neoplasms
including adult T-cell leukemia/lymphoma
(ATL), cutaneous T-cell lymphomas (CTCLs),
and peripheral T-cell lymphomas (PTCLs)
(Ogura et al. 2014; Ohshima et al. 2004;
Shimauchi et al. 2005; Yoshie et al. 2002).
Mogamulizumab is a humanized anti-CCR4 anti-
body that was approved by the Japanese
Pharmaceuticals and Medical Devices Agency
(PMDA) to treat CCR4+ ATL in 2012 (Ishida
et al. 2012). Mogamulizumab is also effective in
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treating other T-cell neoplasms with CCR4
expression including relapsed CTCLs and
PTCLs (Ogura et al. 2014). FDA approved its
usage for the treatment of relapsed or refractory
mycosis fungoides and Sézary disease in 2018
(Kasamon et al. 2019). It should be noted that
the benefit of mogamulizumab comes hand-in-
hand with some severe skin-relevant adverse
effects including some fatal cases, largely
attributed to its on-target elimination of skin-
resident Tregs (Honda et al. 2015; Ishida et al.
2013; Maemoto et al. 2019). The
mogamulizumab-mediated Treg depletion, how-
ever, can be repurposed to treat cancers and the
Sakaguchi group confirmed that targeting CCR4
by anti-CCR4 monoclonal antibody selectively
depletes effector-type Tregs and evokes the
immune response to cancer (Sugiyama et al.
2013). Many following studies confirmed the
Treg-depleting effect is through antibody-
mediated cytotoxicity (ADCC) (Chang et al.
2016; Kurose et al. 2015; Maeda et al. 2019; Ni
et al. 2015; Ogura et al. 2014; Remer et al. 2014;
Winsett et al. 2017). The first reported Phase I
cancer trial using mogamulizumab showed
promising Treg depletion and limited toxicity,
with additional on-target depletion of Th2 and
Th17 cells (Kurose et al. 2015). Another Phase I
study was recently reported and showed that
mogamulizumab, in combination of nivolumab,
provides a relative safety profile—with manage-
able level 3 or 4 treatment-related adverse events
in 29% patients, showing evidence of anti-tumor
activity and on-target Treg depletion (Doi et al.
2019). There are several other on-going early
trials assessing the toxicity and anti-tumor activ-
ity in solid cancers (Table 12.1). A recent report
puts some doubt on the recovery of Tregs after
mogamulizumab treatment in a patient with
severe graft-versus-host disease (GVHD), where
the elimination of residual mogamulizumab by
plasma exchange did not result in prompt recov-
ery of donor Tregs (Sugiura et al. 2019). This
situation, if it also turns out to be true, may be
the primary reason for mogamulizumab-treatment
related adverse events in the skin (Honda et al.
2015; Ishida et al. 2013; Maemoto et al. 2019) or
in the long run may lead to chronic autoimmune

diseases as seen in cancer patients treated with
ICIs (Michot et al. 2016).

12.3.3.2 CCR5
CCR5 is expressed within and mediates the
functions of several immune cell types, including
T cells, macrophages, eosinophils, myeloid-
derived suppressor cells (MDSC), and dendritic
cells (Jiao et al. 2019). Cancer cells can have
elevated CCR5 expression that provides them
the proliferative, migratory, and/or invasive
properties (Jiao et al. 2018; Nishikawa et al.
2019; Singh et al. 2018; Tang et al. 2016; Yang
et al. 2017; You et al. 2018; Zhang et al. 2018).
The initial burst of developing CCR5 inhibitors—
either small molecules or antibodies—was due to
the definition of CCR5 as a receptor for human
immunodeficiency virus (HIV) with mutations
that can resist HIV infection (Dean et al. 1996;
Samson et al. 1996). Many CCR5 inhibitors are
re-purposed for clinical studies in cancer patients
(Table 12.1), though all these trials are not
initially designed to target Tregs. CCR5 is
expressed by tumor-infiltrating Tregs in several
cancer types (Schlecker et al. 2012; Tan et al.
2009). We have shown that CCL5—a ligand for
CCR5—from the TME can recruit Tregs to
tumors (Tan et al. 2011). Preclinical studies
using CCR5 inhibitor TAK-779 disrupts CCR5-
dependent recruitment of Tregs (Tan et al. 2009).
These results—along with strong genetic evi-
dence that CCR5 deletion reduces
tumorigenesis—indicate a potential therapeutic
effect of targeting CCR5 on certain cancer
patients. The first reported Phase I trial using
maraviroc in colon cancer liver metastasis
showed some therapeutic effects such as
decreased proliferative index and elevated
immune response to metastatic tumors (Halama
et al. 2016). The result did not include an analysis
of Tregs. While other trials are on-going, it is
expected that there will be more clinical data to
explore the impact of targeting CCR5 on Treg
depletion in human cancers. The expression pat-
tern of CCR5, however, dictates a nonspecific
nature, a potential caveat leading to complicated
clinical outcomes.
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12.3.3.3 CCR8
CCR8 was initially identified as a human mono-
cyte and thymus chemokine receptors (Tiffany
et al. 1997). Similar to CCR4, CCR8 is also
selectively expressed in Th2 cells (Zingoni et al.
1998) and recently found to be elevated in tumor-
infiltrating Tregs in many human cancer types
(Plitas et al. 2016), tissue-resident memory T
cells in human skin (McCully et al. 2018), den-
dritic cells during allergic immune response
(Sokol et al. 2018), as well as granulocytes
(Blanco-Perez et al. 2019). CCR8+ Tregs were
later identified as a major regulator of autoim-
mune onset in the experimental autoimmune
encephalomyelitis (EAE), a mouse model used
for the study of multiple sclerosis (Barsheshet
et al. 2017). Among Tregs, CCR8 expression is
very specific to tumor-infiltrating Tregs relative to
peripheral blood and normal tissue counterparts
(De Simone et al. 2016; Plitas et al. 2016). This
distinct expression of CCR8 in tumor-infiltrating
Tregs is very intriguing as targeting CCR8—via
antibody-mediated ADCC—will result in specific
deletion of tumor-infiltrating Tregs while sparing
normal tissue Tregs as shown in colon cancer

(Villarreal et al. 2018). CCR8-targeted therapy
holds great promise in Treg-based cancer immu-
notherapy; however, the clinical benefit for
targeting CCR8 is yet-to-be established.

12.3.4 Other Targets
for Tumor-Infiltrating Tregs

We have listed several other potential targets for
tumor-infiltrating Tregs (Fig. 12.2), including
anti-CD25 antibodies that block IL-2 sequestra-
tion, anti-TGF-β antibody that prevents the down-
stream immunosuppressive effect, and potential
apoptosis inducers that target the highly
proliferative but vulnerable tumor-infiltrating T
cells.

12.4 Perspectives

It has been known for decades that tumor-
infiltrating Tregs are outstanding suppressors for
the antitumor immune responses. It is perceivable
that tTregs—undergoing positive selection after

Fig. 12.2 Potential targets and therapeutics of tumor-infiltrating Tregs
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encountering MHCII with self-antigens—are the
major populations of tumor-infiltrating Tregs as
most tumor antigens are self-antigens with a
minor fraction of neoantigens. Now that we
know the critical function of tumor-infiltrating
Tregs in immune suppression, targeting or deplet-
ing tumor-infiltrating Tregs represents a viable
approach to release anti-tumor immunity. The
obstacles are (1) the efficacy of depletion/inhibi-
tion of tumor-infiltrating Tregs; (2) the specific-
ity—including to normal Tregs and other immune
cell populations; and (3) the identification of tar-
get cancer patient populations.

The first obstacle is relatively easy to conquer.
For example, many outstanding publications have
shown efficient Treg deletion using anti-CTLA-4
antibody, anti-CCR4 antibody, and others under
the context of cancer immunotherapy in human
clinical trials and mouse models of human cancer
as discussed above.

The second obstacle has been a long-standing
issue because all the current drug targets for Tregs
are not specific to tumor-infiltrating or tumor-
activated—those that are not located within
tumors but are activated by tumor antigens—
Tregs. This is the major reason that these Treg-
targeting drugs often lead to treatment-related
adverse events in cancer patients and that in
many cases, these adverse events cause major
problems to patients. The Sakaguchi group has
tried to divide the CD4+FOXP3+ cells in the
peripheral blood of healthy individuals into
three distinct populations—based on the differen-
tial expression of CD45RA, FOXP3, or CD25—
these including naïve/resting Tregs
(CD45RA+FOXP3lowCD25low), effector Tregs
which have high suppressive activity
(CD45RA!FOXP3hiCD25hi), and non-Tregs
with no suppressive activity
(CD45RA!FOXP3lowCD25low) (Miyara et al.
2009; Tanaka and Sakaguchi 2019). Numerous
studies have shown that tumor-infiltrating Tregs
tend to be effector Tregs which express immuno-
suppressive molecules, such as CTLA-4, LAG-3,
and TIGIT, at higher levels than peripheral blood
Tregs. As discussed previously, therapies
targeting these molecules may have some

selectivity in targeting tumor-infiltrating Tregs
(Tanaka and Sakaguchi 2019). The problem still
remains because effector Tregs exist at a signifi-
cant amount within normal peripheral bloods and
other tissues; hence, targeting these Tregs are
inevitably leading to immune-related adverse
responses. This leads to the ultimate demand for
the identification of markers specific for tumor-
infiltrating Tregs. Several other studies have
looked at transcriptional differences between
tumor infiltrating Tregs and peripheral blood
Tregs or normal tissue Tregs (De Simone et al.
2016; Magnuson et al. 2018; Plitas et al. 2016).
Zheng et al. used single-cell RNA sequencing of
tumor-infiltrating, peripheral blood, and normal
tissue lymphocytes from hepatocellular carci-
noma patients to characterize tumor-infiltrating
Tregs and found several differentially regulated
genes; some that were identified by other studies
including CTLA4, GITR (TNFRSF18), TIGIT,
LAYN, 4-1BB (TNFRSF9), OX40 (TNFRSF4),
and CCR8, as well as those that have not been
identified before including STAT3 and RGS1
(Zheng et al. 2017). Apart from the expression
of CCR8 in tumor-infiltrating Tregs and its poten-
tial prognostic value in breast cancer, Plitas et al.
also found that a subset of tumor-infiltrating
Tregs in breast, lung, and melanoma patients
exclusively expressed CD177, a cell surface pro-
tein previously only studied in neutrophils (Plitas
et al. 2016). Recently we identified an important
function of epithelial-cell expression of CD177 in
tumor suppression via attenuating β-catenin (Kluz
et al. 2020) and that the expression of CD177 in
tumor-infiltrating Tregs is critical in mediating
the immunosuppressive function of Tregs in
human cancers (Borcherding et al. 2018). These
types of studies may be used to identify novel
suppressive proteins and signaling pathways that
are uniquely upregulated in tumor-infiltrating
Tregs. Another potential avenue is to exploit the
unconventional targets of tumor-infiltrating Tregs
that are previously considered to be undruggable.
For example, nuclear receptor 4A family (NR4A)
has been shown to play a critical role in
maintaining the abundance of tumor-infiltrating
Tregs (Hibino et al. 2018). Our analysis indicates
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that NR4A family genes are among the top of
the differentially expressed genes in tumor-
infiltrating Tregs in human cancers, along with
a list of genes whose protein products are
present intracellularly (Borcherding et al. 2018;
Vishwakarma et al. 2019). These nuclear
receptors and non-kinase intracellular proteins
are traditionally considered as undruggable
targets; however, the advance in bioengineering
and medicinal chemistry makes them possible to
be targeted such as using the proteolysis-
targeting chimera (PROTAC) technology as we
have recently published to better target BCL-XL

in cancer therapy (Khan et al. 2019).
The third obstacle is to choose cancer types

and patient populations within certain cancer
types. Like all currently available cancer
immunotherapies, targeting Tregs will not benefit
all cancer patients and sometimes may do more
harm than good due to the broad immunosuppres-
sive activity of Tregs including cancer-promoting
immune cells. The primary consideration should
be given for the abundance of immunosuppres-
sive populations of Tregs and the immune land-
scaping within tumors. The threshold of Treg
abundance should be the prerequisite for patients
receiving anti-Treg therapy. The immune land-
scaping is able to dictate the potential influence
of Treg depletion on shaping antitumor immu-
nity. For example, some tumors exhibit depen-
dence on other immunosuppressive cells such as
MDSCs or on both Tregs and MDSCs, where
depleting Tregs will be insufficient to invoke
antitumor immunity.

The future Treg-based cancer immunotherapy
should be able to compensate for ICI therapies
since cancer types that benefit the most from ICI
therapies show only an average of 25% response
rate. As the primary ICIs targets are exhausted T
cells, Treg-based therapy may benefit some
patient populations as the frontline choice where
ICIs are predicted to fail. Moreover, Tregs have
been accused of the culprit for certain hyperpro-
gressive cancers after nivolumab therapy
(Kamada et al. 2019b), suggesting that Treg-
based therapy could also benefit these hyperpro-
gressive patients after ICI therapy.
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