
European Journal of Immunology

RESEARCH ARTICLE
Tumor Immunology

Type I Interferon Drives a Cellular State Inert to
TCR-Stimulation and Could Impede Effective T-Cell
Differentiation in Cancer
Dillon Corvino1 Martin Batstone2,3 Brett G. M Hughes2,3 Tim Kempchen1 Susanna S Ng1
Nazhifah Salim1 Franziska Schneppenheim1 Denise Rommel1 Ananthi Kumar1 Sally Pearson4
Jason Madore4 Lambross T. Koufariotis4 Lisa Maria Steinheuer1 Dilan Pathirana5 Kevin Thurley1
Michael Hölzel1 Nicholas Borcherding6 Matthias Braun7 Tobias Bald1

1Tumor-Immunobiology, Institute for Experimental Oncology, University Hospital Bonn, Bonn, Germany 2Royal Brisbane and Women’s Hospital, Brisbane,
Queensland, Australia 3Faculty of Medicine, University of Queensland, Brisbane, Queensland, Australia 4QIMR Berghofer Medical Research Institute,
Herston, Australia 5Faculty of Mathematics and Natural Sciences, and the Life and Medical Sciences Institute (LIMES), Rheinische
Friedrich-Wilhelms-Universität Bonn, Bonn, Germany 6Department of Pathology and Immunology, Washington University School of Medicine, St. Louis,
Missouri, USA 7Department of Pediatric Hematology, Oncology and Immunodeficiency, University Childrens Hospital of the Justus-Liebig University Gießen,
Gießen, Germany

Correspondence: Dillon Corvino (Corvino.Dillon@ukbonn.de) Tobias Bald (Tobias.Bald@ukbonn.de)

Received: 9 July 2024 Revised: 14 October 2024 Accepted: 29 October 2024

Funding: T.B. is funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under DFG Excellence Strategy – EXC2151–390873048
and the Melanoma Research Alliance 693786 (https://doi.org/10.48050/pc.gr.91568). K.T. is funded by DFG Excellence Strategy EXC2151–390873048 and
EXC2047-390873048.

Keywords: CD8+ T-cells | HNSCC TILs | scRNAseq | scTCRseq | Type I IFN

ABSTRACT
Background: Head and neck squamous cell carcinoma (HNSCC) is linked to human papillomavirus (HPV) infection. HPV-
positive and HPV-negative HNSCC exhibit distinct molecular and clinical characteristics. Although checkpoint inhibitors have
shown efficiency in recurrent/metastatic HNSCC, response variability persists regardless of HPV status. This study aimed to
explore the CD8+ T-cell landscape in HPV-negative HNSCC.
Methods:We performed simultaneous single-cell RNA and TCR sequencing of CD8+ tumor-infiltrating lymphocytes (TILs) from
treatment-naïve HPV-negative HNSCC patients. Additionally, cells were stimulated ex vivo, which allowed for the tracking of
clonal transcriptomic responses.
Results: Our analysis identified a subset of CD8+ TILs highly enriched for interferon-stimulated genes (ISG). TCR analysis
revealed ISG cells are clonally related to a population of granzyme K (GZMK)-expressing cells. However, unlike GZMK cells,
which exhibited rapid effector-like phenotypes following stimulation, ISG cells were transcriptionally inert. Additionally, ISG
cells showed specific enrichment within tumor and were found across multiple tumor entities.
Conclusions: ISG-enriched CD8+ TILs are a consistent feature of various tumor entities. These cells are poorly understood but
possess characteristics that may impact antitumor immunity. Understanding the unique properties and functionality of ISG cells
could offer innovative treatment approaches to improve patient outcomes in HPV-negative HNSCC and other cancer types.
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1 Introduction

Head and neck squamous cell carcinoma (HNSCC) encompasses
cancers originating from the mucosal epithelium of the oral
cavity, pharynx, or larynx. HNSCC is closely associated with
myriad environmental and lifestyle factors such as air pollutants,
tobacco, and alcohol consumption [1]. In addition, viral co-
infection with human papillomavirus (HPV) is observed in a
subset of HNSCC (∼32%) patients [2]. Interestingly, HPV-positive
HNSCC is associated with a more favorable prognosis, especially
in early-stage disease [3–5]. The clinical benefit of HPV status is
thought to derive from HPV-specific immune responses and the
intrinsic immunogenicity of HPV [6, 7].

Standard-of-care treatment options for HNSCC include surgi-
cal resection, radiotherapy, and chemotherapy [1]. However,
immunotherapy-based treatment approaches such as immune
checkpoint inhibition (ICI), have shown significant clinical
benefit in the recurrent/metastatic setting [8]. In fact, immune
checkpoint inhibition has been approved for first-line treatment
of patients with recurrent/metastatic (R/M) HNSCC [9]. Unfor-
tunately, the response to immunotherapy varies significantly.
Variable responses may, in part, be attributed to the immunosup-
pressive tumor-microenvironment (TME) commonly observed
in HNSCC [1]. While it is generally accepted that HPV-positive
HNSCC shows more robust antitumor immune responses com-
pared with HPV-negative HNSCC, recent immunotherapy trials
did not find an association between HPV status and response [10,
11]. Given, that CD8+ T-cells are recognized as key drivers of anti-
tumoral responses, a better understanding of the CD8+ tumor-
infiltrating lymphocyte (TIL) heterogeneity in HPV-negative
patients is needed to improve the treatment for this subgroup of
HNSCC.

Interferons (IFNs) are pleiotropic cytokines primarily produced
by immune and stromal cells in response to pathogens or
malignant transformation. Three types of IFNs have been
described, which differ by the distinct receptors they bind and
the subsequent signaling cascades induced. Type I IFNs (IFN-
I) have well-described roles in both anti-viral and antitumor
responses. In particular, IFN-I can directly inhibit tumor growth
by inhibiting proliferation and inducing apoptosis. In addition,
IFN-I can act indirectly to induce antitumor immune responses,
for example, via the activation of dendritic cells, natural killer
cells, or neutrophils [12]. Simultaneously, IFN-I can reduce the
protumorigenic functions of regulatory T-cells and myeloid-
derived suppressor cells [13]. In fact, IFN-I signaling is considered
a “third signal” of activation and important for naïve T-cell
priming, activation, proliferation, and memory differentiation
[14]. Thus, IFN-I is regarded as a crucial cytokine in facilitating
cancer immunosurveillance and boosting the efficacy of cancer
immunotherapies [13, 15–17].However,wehave previously shown
via genetic ablation, that IFN-I signaling is dispensable for
the expansion and function of adoptively transferred tumor-
specific CD8+T-cells [17]. In addition, several studies also provide
evidence that IFN-I signaling, at least in the later stages of
antitumor immune responses, can promote protumor changes
and ultimately immune escape [18]. For example, IFN-I signaling
is linked to the expression of immune checkpoints, IL-10, Nos2,
and the development of a T-cell exhaustion phenotype [17, 19,
20]. Therefore, the effect of IFN-I signaling on the functional out-

comes of tumor-infiltrating T-cells is multifaceted and requires
further investigation.

Single-cell RNA sequencing (scRNA-seq) of immune cell subsets
in cancer patients has enabled the high-resolution mapping of
cellular heterogeneity. This methodology has been applied to the
analysis of human T-cells in response to cancer immunothera-
pies [21]. However, traditionally this approach only focuses on
assessing the transcriptional state of ex vivo isolated cells. Thus,
capturing a snapshot of the cellular transcriptomic landscape
within the TME. Therefore, we leveraged an ex vivo perturbation
via a short-term T-cell receptor (TCR) stimulation. Coupled with
scRNAseq and single-cell TCR sequencing, we were able to study
the clonal dynamics and evaluate the responsive potential of
CD8+ TIL subsets.

Herein, we sequenced over 11,000 resting and stimulated
CD8+ TILs isolated from treatment-naïve HPV-negative HNSCC
patients. As such, we were able to define ex vivo cellular states
and their stimulation outcomes. Importantly, we identified a
population of T-cells rich in IFN-stimulated genes (ISG). These
ISG cells were found to be associated with an IFN-I signature
and were specifically enriched within the tumor tissue of various
tumor entities. Furthermore, these cells were found to be clonally
related to a population of cells highly expressing granzyme
K (GzmK). However, unlike the GzmK subset, ISG-cells were
transcriptionally inert to stimulation and thus possibly possess
a unique role within the TME. This study sheds light on the
existence of this overlooked population and begins to investigate
their functionality.

2 Results

2.1 Single-cell RNA Sequencing of CD8+ TILs
from Treatment-naive HNSCC Patients Identifies
Exhausted and Effector Populations

CD8+ T-cells are key drivers of antitumor responses. However,
there is substantial heterogeneity in CD8+ T-cell phenotypes
within TIL populations. As such, we sought to explore the
diversity of CD8+ TILs in HPV-negative treatment-naïve non-
R/M HNSCC patients. We isolated live CD45+CD3+CD4-CD8+
from eight patients using flow cytometry-based cell sorting and
subjected half of those cells to ex vivo CD3/28 TCR stimulation.
After 5 h of stimulation, we performed single-cell RNA and
TCR sequencing to simultaneously identify CD8+ TIL phenotypes
and clonotypes. We thereby were able to profile transcriptional
changes in response to TCR-based stimulation (Figure 1A).

Sequencing data from both unstimulated and TCR-stimulated
samples were integrated and projected onto a unified UMAP
space (Figure 1B). This resulted in 14 distinct clusters of
CD8+ TILs with the majority of identified clusters evenly dis-
tributed across both unstimulated and stimulated conditions
(Figure S1A). Importantly, two new clusters emerged specif-
ically post-TCR-stimulation (clusters Stimulated-1; Stim-1 and
Stimulated-Exhausted; StimEX). Three naïve/memory cell clus-
ters were identified and annotated based on their expression of
markers such as IL7R, CCR7, and SELL (Figure 1C). A cluster
of cells expressing GZMK as well as EOMES, NKG7, TNFRSF18
(encodes for GITR), and CD69 was also identified (Figure 1D
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FIGURE 1 The transcriptional landscape of tumor-infiltrating CD8+TILs in treatment-naive in head and neck squamous cell carcinoma (HNSCC)
patients. (A) schematic detailing the experimental setup used to generate the dataset created in BioRender.com. In brief, the tumors from eight head and
neck squamous cell carcinoma (HNSCC) patients were digested and processed into a single-cell suspension. The cell suspensionwas cultured for 5 hwith
or without CD3/CD28 T-cell stimulation. Subsequently, the cells were sorted for CD3+CD4-CD8+ T-cells and subjected to 10× single-cell sequencing.
Key patient characteristics are listed in the table below the schematic. All patients were HPV negative, treatment naïve, and samples were from primary
tumors. Schematic createdwith BioRender.com (B)UMAPprojection of all cells that passedQC inclusion criteria. (C–G)UMAPprojections highlighting
(first column) clusters identified and subsequently the expression density of key genes used in their identification. (G) MAIT-cell identity is highlighted
using the joint density expression of TRAV1-2 and KLRB1 (H) Barplot showing the frequency of each cluster identified as a proportion of the entire
dataset. Data representative of eight patients acquired in one sequencing experiment.
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and data not shown). Additionally, a cluster of cells expressing
high levels of various interferon-stimulated genes, including
ISG15, IFI6, IFIT3, MX1, ISG20, IFITM1, IFIT1, MX2, and OAS3
(Figure S1B and data not shown)was recognized and annotated as
the interferon-gene stimulated (ISG) cluster of cells (Figure 1D).
The stimulated-1 (Stim-1) cluster from TCR-stimulated cells was
enriched for the expression of immune effectormolecules such as
IFNG, XCL1, XCL2, CRTAM, TNF, TNFSF14 (encodes for LIGHT)
and TNFRSF9 (encodes for 4-1BB) (Figure 1D and Figure S1B).
Three exhausted cell clusters were also identified, all express-
ing high levels of canonical exhaustion markers such as TOX,
HAVCR2, PDCD1 (encodes for Tim-3 and PD-1, respectively),
CTLA4, ENTPD1 (encodes CD39), and TIGIT (Figure 1E and
Figure S1B). One of these exhausted clusters was exclusively
found post-TCR-stimulation and as such was designated as
the stimulated-exhausted (StimEX) cluster. A small cluster of
tissue-resident memory (TRM) cells was identified based on the
expression of canonical TRM markers such as ZNF683 (encodes
for HOBIT), PRDM1 (encodes for BLIMP1), ITGA1 (encodes for
CD49A), ITGAE (encodes for CD103), and CXCR6 (Figure 1F and
Figure S1B). A small population of proliferating cells was also
identified by their enrichment for proliferation and cell cycle
genes, notablyMKI67 (encodes for Ki-67) (Figure 1F).

2.2 HNSCC TME is Populated with
Unconventional CD8+ T-cells

We also identified three clusters of unconventional T-cells
(Figure 1G and Figure S1C). Two of these had gene expression
patterns indicative of gamma delta (ɣδ) T-cell subsets. The
third cluster expressed markers corresponding with a mucosal-
associated invariant T (MAIT) cell population. ɣδ T-cell clusters
could be differentiated based on the expression of TCR genes
(Figure S1D), marking the two clusters as the Vɣ9Vδ2 T-cells
(G9D2) and non-G9D2 populations. All unconventional T-cell
populations expressed high levels of CD3 and CD8 as previously
described [22, 23] (Figure S1E). Differential gene expression
revealed that the G9D2 population expressed cytotoxicity mark-
ers such as GZMA, GZMB, GZMH, GNLY, PRF1, and NKG7
(Figure S1B,F). Non-G9D2 γδ T-cells expressed markers such
as TCF7, CD27, KLRD1, and SELL. Analysis of differentially
expressed transcription factors revealed that these three cell
clusters had distinct and unique transcriptional regulatory pro-
grams (Figure S1G). For example, G9D2 cells revealed specific
enrichment for transcription factors EOMES, ZEB2, and ZNF683
(encodes for HOBIT), while non-G9D2 cells were enriched
for ID3, IKZF2, TCF7, and BACH2. Meanwhile, MAIT cells
demonstrated a distinct pattern of enrichment for transcription
factors associated with the MAIT lineage, such as RORA, and
ZBTB16 (encodes for PLZF). Altogether, the unconventional T-
cells, TRMs, and proliferative cells, cumulatively represented
about ∼10% of TILs within the dataset (Figure 1H).

2.3 Ex Vivo TCR Stimulation Leads to the
Emergence of Two Transcriptionally Distinct T-cell
Clusters

For further analysis, we removed the three unconventional T-cell
clusters from the dataset and recalculated the UMAP coordinates

(Figure 2A). We next sought to investigate the two cell clusters
that predominantly arose from TCR-based stimulation. Impor-
tantly, both stimulation-induced clusters shared expression of a
number of genes expected following TCR activation, including
critical effector molecules such as IFNG, GZMB, or FASLG,
as well as activation markers such as ICOS and TNFRSF9
(encodes for 4-1BB) (Figure 2B and Tables S1 and S2). How-
ever, despite an overlap of activation-induced transcription, both
stimulation-induced clusters showed distinct patterns of gene
expression reminiscent of their origin (Figure 2C and Table S3).
For example, the Stim-1 cluster was enriched for genes such
as IL7R, XCL1, CD69, TNFSF14 (encodes for LIGHT), CD28,
and LTB, whereas the StimEX cluster expressed high levels of
exhaustion markers such as TOX, LAG3, HAVCR2 (encodes for
TIM-3) and CD96. These basal gene expression profiles seem to
overlap with gene expression of other clusters of the dataset.
For example, genes enriched in the Stim-1 cluster were also
highly abundant in Naïve/memory, GZMK, and ISG clusters,
while genes expressed within the StimEX cluster were found
enriched within the remaining two TEX clusters and to a lesser
extent within the TRM and proliferating cell clusters. This
overlap suggested the two stimulation-induced clusters may
have arisen from different transcriptional states. To test this
hypothesis, we used the single-cell TCR sequencing data to
trace clonal populations between unstimulated and stimulated
datasets.

To assess the TCR landscape of HNSCC TILs, we analyzed
the top 50 clonotypes detected within the dataset (Figure 2D).
This analysis revealed clonotypes observed in the Stim-1 cluster
were also found within ISG and GZMK clusters. In con-
trast, the StimEX cluster shared many highly abundant clones
with the TEX-1 cluster, indicating clonal overlap between these
populations. To explore this further, we next traced clones
pre- or poststimulation to investigate the clonal overlap with
respect to stimulation and cluster identity. However, this anal-
ysis relied on the assumption that clones were sufficiently
represented in both pre- and poststimulation datasets. Indeed,
it was observed that when clones are represented in two or
more T-cells (clone size small), >60% of clones are captured
within the stimulated dataset (i.e., shared) (Figure 2E). There-
fore, we proceeded with tracing the transcriptional responses
of shared T-cell clones by linking their cluster identity pre-
and poststimulation. We observed that cells from the Stim-1
cluster largely overlapped with unstimulated ISG and GZMK
clusters (Figure 2F). Tracing unstimulated ISG clones, we
observed clonal overlap that suggested stimulated ISG cells,
either maintain their identity or adopt a GZMK or Stim-1
transcriptional phenotype. Similarly, unstimulated GZMK cells
either retained GZMK identity or adopted ISG or Stim-1 tran-
scriptional profiles poststimulation. In contrast, clones from
the StimEX cluster were predominantly found to overlap with
the unstimulated TEX-1 cluster with a minimal contribution
from other unstimulated clusters (Figure 2G). As predicted,
unstimulated TEX-1 cluster clones overlapped with stimulated
StimEX or TEX-1 clusters. Interestingly, this analysis also revealed
that TCR stimulation was capable of inducing a gene signature
associated with T-cell activation in a subset of transcriptionally
terminally exhausted T-cells (TCF7-TOX+PD1+) (Figures 1E
and 2B,C)
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FIGURE 2 Ex vivo TCR stimulation-induced transcriptional states develop from distinct unstimulated origins. (A) UMAP projection of CD8+

TILs identified in HNSCC patients after removal of unconventional T-cell subsets. (B) Heatmap of DEGs found to be upregulated (>0.5 log2FC) in both
stimulated-1 and stim-exhausted clusters, selected genes are annotated. (C) Heatmap of genes found to be significantly differentially expressed (>0.5
log2FC) between stim-1 and stim-exhausted clusters, selected genes are annotated. (D) Heatmap of the top 50 most abundant clonotypes found in CD8+

HNSCC TILs (ward.D2 clustering and binary distance function). (E) Stacked barplot showing the frequency of each clone size definition that is only
found in the unstimulated sample (Unique to Unstimulated) or was also recovered poststimulation (shared). Single (x = 1), small (1 < x < = 5), medium
(5 < x ≤ 10), large (10 < x ≤ 20) and hyperexpanded (20 < x ≤ 150). Where x = number of cells with exact CDR3 amino acid sequence. (F) Circos plots
depicting the clonal overlap between clusters pre- (unstimulated; top arc) and poststimulation (stimulated; bottom arc). Ribbons are colored based on
their unstimulated origin. Left column shows ribbons that connect to Stim-1 cluster whereas right column highlights ribbons that originate from ISG
(top) or GZMK (bottom) clusters. (G) Same as (F) with left plot highlighted to show ribbons connecting with Stim-exhausted (StimEx) and ribbons in
right plot highlighting those that originate from unstimulated TEx-1 cluster. Data representative of eight patients acquired in one sequencing experiment.
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FIGURE 3 ISG cells are poorly transcriptionally responsive to TCR stimulation. (A) UMAP projection of Stimulated-1, ISG, and GZMK clusters
both from unstimulated and stimulated datasets. (B) UMAP projection highlighting TCR clones uniquely found within unstimulated ISG cluster (green)
or unstimulated GZMK cluster (black). (C) UMAP projection and quantification highlighting the distribution of unique US-ISG clones poststimulation.
Barplots quantify the frequency of cells poststimulation. (D) same as (C) but for US-GZMK clones poststimulation. Data representative of eight patients
acquired in one sequencing experiment.

2.4 ISG Cells Largely Retain Their
Transcriptional Identity Upon TCR Stimulation

Given the clonal overlap between ISG, GZMK, and Stim-1
clusters, we next sought to investigate their responsiveness to
TCR stimulation. To this end, we first isolated these clusters and
projected the cells onto their ownUMAP coordinates (Figure 3A).
Subsequently, we identified clones that were present in both
pre- and poststimulation datasets. However, cells from any par-
ticular clonotype may be distributed across numerous clusters
prestimulation. Therefore, the poststimulation transcriptional
phenotype may result from the stimulation of cells from any
prestimulation cluster. To mitigate this confounding factor, we
further filtered for clones for which their constitute cells were
entirely contained within the ISG or GZMK clusters in the
unstimulated dataset. Thus, any poststimulation transcriptional
phenotype could be better ascribed to the stimulation of cells with
an ISG orGZMK transcriptional identity. This filtering resulted in
the retention of 26 and 53 unique clonotypes within unstimulated
ISG or unstimulated GZMK clusters, respectively (Figure 3B).
Following TCR stimulation, the majority of ISG T-cells retained
their transcriptional identity (Figure 3C). In contrast, over 50%
of unstimulated GZMK T-cells adopted a Stim-1 transcriptional
identity following stimulation (Figure 3D), while the remaining

proportion retained their GZMK identity. Interestingly, there was
minimal adoption of an ISG signature following stimulation of
GZMK clones.

2.5 A Type I Interferon Signature is Associated
with Reduced Transcriptional Activity in ISG TILs

Given the diverse role of interferon signaling for the function of
tumor-infiltrating T-cells, the relevance of ISG cells during tumor
progression and immunotherapy remains elusive. We performed
differential gene expression analysis and revealed a dominant
signature enriched within the ISG population (Figure 4A and
Table S4). The top 10 differentially expressed genes identified
within the ISG cluster were almost all found downstream of
interferon signaling (Figure 4B). To understand the type of
interferon signaling responsible, clusters were scored for genes
contributing to a type I or type II interferon response (Figure 4C).
Results showed the ISG cluster had enrichment for a type I,
but not a type II interferon gene signature. Gene Ontology (GO)
analysis was performed on the differentially up- or downreg-
ulated genes within the ISG cluster relative to other clusters
to unravel dominant biological processes associated with ISG
cells. This analysis revealed a broad increase in translation-
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FIGURE 4 ISG cells are enriched for a type I interferon signature and are associated with reduced transcriptional. (A) Heatmap showing the top
upregulated DEGs (> 0.25 Log2FC) identified in ISG cluster. (B) Heatmap showing top 10 DEGs identified in ISG cluster. (C) Violin plots of UCell scores
for a type I interferon (top) or a type II interferon (bottom) gene signatures. (D) Gene ontology analysis for the top upregulated (left) and downregulated
(right) biological processes identified in the ISG cluster. Data representative of eight patients acquired in one sequencing experiment.

related terms and type I IFN signaling responses (Figure 4D).
Interestingly, downregulated genes were enriched for GO terms
associated with transcriptional regulation. This finding could
explain our previous observation, that ISG cells poorly adopt new
transcriptional states following TCR stimulation.

2.6 ISG Cells are Enriched in CD8+ TILs Across
Various Tumor Types

To establish whether ISG cells could be identified in other
microenvironments, we generated a specific gene signature using
the top 10 differentially expressed genes from ISG cells within our
data set (Figure 4B). We next examined if this signature could

identify ISG cells in a publicly available HNSCC dataset in which
an ISG cluster had previously been reported [24]. Indeed, using
our curated ISG signature, we were able to correctly identify a
cluster of cells enriched for type I interferon genes (Figure S2A).

To better understand the abundance of ISG cells within CD8+
T-cells in healthy and malignant tissues, we scored cells from
a pan-cancer dataset for our ISG signature [25]. Indeed, we
could identify a fraction of T-cells highly enriched for our ISG-
signature (Figure 5A). Next, we assessed the frequencies of ISG
cells across normal and tumor tissues. Here, we found ISG cells
to be significantly increased in tumor tissues, relative to normal
tissue (Figure 5B). ISG cells were most frequent in Ovarian and
Esophageal tumor types but also detected to various degrees
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FIGURE 5 Cells with a type I interferon signature can be found across various tumor entities and are enriched within tumor tissue. (A) UMAP
coordinates of CD8+ T-cells in a pan-cancer dataset overlaid with UCell score for ISG signature. Data representative of 67 patients. (B) Boxplot showing
ISG cluster frequency per donor across normal and tumor tissue samples. (C) Boxplot showing ISG cluster frequency within tumor samples per donor
across tumor types within the dataset. (D) Circos plots generated using the top 20 interactions for each source (left) or target (right) with ribbons
highlighting interactions originating from ISG cluster (left) or terminating in ISG cluster (right), ribbons colored by source. Data representative of 26
patient samples. p-value calculated using a two-tailed t-test. (n) value indicates the number of unique donors. ns = p > 0.05, *p < 0.05, **p < 0.01, ***p
< 0.001, ****p < 0.0001.

among all other tumor types assessed (Figure 5C). As expected
ISG cells were solely enriched for type I but not type II IFN genes
(Figure S2B). We also assessed a COVID-19 dataset including
some Influenza samples to determine if ISG cells are also enriched
in the blood of virally infected patients [26]. Indeed, in both
conditions we observed a population of CD8+ T-cells enriched
for our ISG signature (Figure S2C) with a higher frequency in
disease compared with healthy control samples (Figure S2D),
suggesting that the ISG cluster phenotype is not restricted to
tumor immunity.

Finally, to better understand the functional role of ISG cells
within the TME, we employed cell-cell communication analysis.
Utilizing a published HNSCC dataset containing an array of
immune cell subsets from both HPV+ andHPV− patients [24], we
revealed that ISG cells served as the source for interactions with
CD16 positive cells, as well as with NK cells and plasmacytoid
dendritic cells (PDCs) (Figure 5D). ISG cells were also found to be
a target for DC, B cell, andCD14 cell interactions. Hence, this data
suggests ISG cells interact with key innate immune cell subsets
within the TME and thus potentially are important orchestrators
of antitumor immunity.

3 Discussion

HNSCC is a prevalent and complex disease with numerous
etiological influences. For example, viral co-infection with HPV
in Oropharyngeal HNSCC is associated with a better progno-
sis, especially in early-stage disease. As such, HPV-negative
HNSCC presents as a more therapeutically challenging entity.
Therefore, we sought to expand the knowledge base of CD8+
tumor-infiltrating lymphocytes (TILs) landscape, specifically in
treatment-naïve HPV-negative HNSCC patients. We employed a
multimodal sequencing approach, together with an ex vivo TCR
stimulation, to facilitate tracing of transcriptional profiles and
response capacity in CD8+ T-cell subsets.

Single-cell RNAseq of immune cell subsets has enabled in-depth
mapping of the cellular heterogeneity of various disease condi-
tions. However, traditionally this methodology only assesses the
transcriptional state of cells ex vivo. Thus, capturing a snapshot
of the cellular transcriptomic landscape. However, by leveraging
an ex vivo perturbation coupled with sequencing approaches,
others have ascertained both ex vivo profiles and their subsequent
activation potentials. For example, a study by [27] performed ex
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vivo TCR stimulation on T-cells isolated from several healthy
donor tissues. The authors were able to define both conserved
tissue signatures as well as the activation states of T-cells [27].
Using a similar approach, we included TCR sequencing to
facilitate the tracing of transcriptional responses within clonal
populations of tumor-infiltrating T-cells. Notably, we observed
two unique T-cell clusters specifically induced by TCR stim-
ulation. Transcriptional signatures and clonal overlap suggest
these populations arose via stimulation of distinct ex vivo subsets.
Importantly, we observed cells that displayed a transcriptional
program of terminal exhaustion (TCF7-TOX+PDCD1+TIM3+).
However, we observed that those populations retained substantial
capacity to respond to TCR stimulation, at least in vitro, when
alleviated of their tumor microenvironmental milieu [28]. These
data posit that transcriptionally exhausted cells may retain the
substantive capacity to respond to stimulation. Indeed, numerous
scRNAseq studies have identified clusters of exhausted cells that
simultaneously express high levels of effector molecules [29,
30]. However, since most scRNAseq studies do not incorporate
a stimulation step, the response capability of transcriptionally
exhausted cells has been underappreciated. Resistance to PD-
1 therapy is still a frequently observed clinical scenario in
HNSCC and the presence of terminally exhausted T-cells has
been proposed to be a possible cause of resistance toward PD-
1 therapy [31]. Our data tentatively suggests that combination
strategies to break down tumor microenvironmental signals
might be a strategy to overcome PD-1 resistance, indeed re-
invigoration of exhausted T-cells is an active area of investigation
[32]. Nonetheless, these observations highlight the need for
multimodal data approaches to identify prototypic exhausted T-
cells while urging caution against defining exhaustion solely
based on transcriptional profiles.

IFN-I signaling in CD8+ T-cells is associated with both anti-
and protumoral function [18]. Therefore, the clinical implications
of an ISG-rich population are poorly understood. Substantial
challenges impede the experimental investigation of these cells
and as such our multimodal sequencing approach has provided
a comprehensive investigation of this population. Our analysis
has revealed that CD8+ ISG cells are a common feature of solid
malignancies and are specifically enriched within tumor tissue.
Furthermore, we have found that ISG cells are clonally related
to GZMK-expressing CD8+ TILs. However, experimental pertur-
bation revealed that ISG cells are transcriptionally stable and
inert to TCR stimulation. However, it remains to be determined
whether ISG cells are entirely unresponsive or if they simply
possess an altered threshold for activation; potentially requiring
more prolonged or intense stimuli to trigger transcriptional
changes. Although, numerous unknowns remain and ultimately
further experimentation is required to understand the functional
implications of this differentiation pathway and these cellular
states.

This is not the first report to describe a population of cells
enriched with interferon-stimulated genes. Indeed, numerous
others have observed similar populations amongst malignant,
infectious, and healthy tissues [24, 30, 33, 34]. However, the
absence of specific cell-surface markers has hindered investiga-
tion efforts. Thus far, reports of this population have been limited
tomere observation of their appearance. Illustrative of this, Wang
et al. [34] identified a subset of ISG cells within sequencing data

of healthy PBMCs. Despite their efforts, the authors were unable
to experimentally isolate this population and thus were limited
in the functional analysis that could be performed. Therefore,
alternative markers and/or strategies to identify and isolate cells
with this cellular state are required. In the absence of this, our
multimodal sequencing and experimental perturbation approach
has provided novel insights into ISG CD8+ TILs.

The relationship between GZMK and ISG cells is notable as
others have demonstrated that GZMK expression within solid
tumors is associated with improved patient outcomes [35, 36]).
However, the nature of this association is unclear, as GZMK is
usually correlated with innate cells and naïve phenotypes. For
example, GZMK is more dominantly expressed within immature
NK cells. However, GZMK expression within CD8+ T-cells is
predominantly observed within central memory and effector
memory subsets [37]. Thus, supporting the notion that GZMK
expression within CD8+ T-cells may correlate with a favorable
prognosis. Although, it has been observed that GZMK+ CD8+
T-cells are poorly cytotoxic and instead produce IFNγ [37, 38].
Interestingly, others have reported differential effects of TCR or
cytokine stimulation on GZMK expression. Namely, that TCR
stimulation induces the release of GZMK and an increase in
GZMB expression. Conversely, cytokine-based stimulation drives
the accumulation of GZMK [37]. These findings are consistent
with our results which demonstrated that TCR-based stimulation
drives GZMK cells to down-regulate GZMK and upregulate
GZMB as they differentiate toward a more terminal effector
phenotype. Therefore, these data suggest GZMK positivity marks
CD8+ T-cells which are not yet terminally differentiated and
instead possess a more memory-like phenotype. Given the above
model, the accumulation of ISG cells could prevent the devel-
opment of more terminally differentiated antitumoral responses
via GZMK intermediaries. However, GZMK+ CD8+ T-cells have
been observed within tumor stroma and have been implicated in
poor prognosis [39]. Additionally, GZMK CD8+ TILs have been
described as a transition state on the trajectory toward exhaustion
[36, 40]. This is consistent with reports showing IFN-I signaling
as a driver of T-cell exhaustion [19, 20]. Therefore, the functional
consequences of ISG and GZMKTILs are poorly defined. Further
studies are required to better understand the dynamics and
function of T-cell clusters infiltrating tumor tissues.

This study sheds light on the complex landscape of CD8+ TILs
in the context of HPV-negative HNSCC. Through a multimodal
sequencing approach and ex vivo perturbation, we identified a
previously overlooked population of CD8+ TILs enriched for
ISGs. These ISG cells exhibited transcriptional inertness to TCR-
based stimulation and were found to be clonally related to
granzyme K-expressing cells. Furthermore, ISG cells were found
to be specifically enriched within tumor tissue and could be
identified in various tumor entities. The specific enrichment of
ISG cells within tumor tissue and their unresponsive nature
suggest the ISG cells may represent an undesirable differenti-
ation path. Therefore, ISG-cells may impede the development
of an effective antitumoral T-cell response. However, further
investigation iswarranted to delineate the functional implications
of ISG cells and to explore potential therapeutic avenues. Our
findings contribute to a deeper understanding of the immune
landscape in HPV-negative HNSCC and highlight an overlooked
T-cell phenotype.
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4 Materials andMethods

4.1 Patient Samples

A total of eight patients who had provided informed consent
were included in this study. Samples were obtained from surgical
resections of primaryHNSCC tumors. All patients presentedwith
oral cavity squamous cell carcinoma and were confirmed to be
human papillomavirus (HPV) negative. Fresh HNSCC tumors
were collected at the time of resection of the primary tumor
and sampled by a pathologist prior to fixation. Fresh tissue
was processed to isolate tumor cells and immune cells prior to
preservation and storage in liquid nitrogen. The patients enrolled
in this study were treatment naïve and characteristics can be
found in Figure 1A.

4.2 Single-cell RNA Sequencing

Cells from each patient were cultured as single-cell suspensions
andwere either stimulated using CD3/CD28 beads or left unstim-
ulated for a duration of 5 h. Following culture, the cells were
sorted using fluorescence-activated cell sorting to isolate live
CD45+CD3+CD4−CD8+ cells. Patient samples were sequenced
as two unstimulated and two stimulated samples where each
sequencing sample represented a pool of four patients. As
such, approximately 10,000 cells per sample pool were carried
forward into the 10x Genomics Single-cell 5’ library pipeline.
The libraries were sequenced using a NextSeq 550 (Illumina).
The sequencing was performed at QIMR Berghofer Medical
Institute.

4.3 scRNAseq Preprocessing

Sequencing reads were processed using cellranger (version 3.1.0)
and reads were aligned to the human reference genomeGRCH38-
3.0.0 [41]. Output from cellranger was processed using Seurat
(version 4.3.0) with additional functionality provided by Seu-
ratDisk (version 0.0.0.9020) and SeuratObject (version 4.1.3)
[42–44]. Each sequencing sample was filtered to keep only cells
that had a minimum of 200 features and keep features that
were detected in a minimum of three cells. Subsequently, the
two unstimulated samples were merged and the two stimulated
samples were merged to give two Seurat objects. These Seu-
rat objects were further filtered to remove cells with greater
than 2500 features or greater than 10% mitochondrial con-
tent. Filtering resulted in 5785 cells with 15,429 features in
the unstimulated dataset and 6042 cells with 15,618 features
in the stimulated dataset. Datasets were normalized using
LogNormalisation with a scale factor of 10,000. Subsequently,
mitochondrial percentage and nCount variables were regressed
using a linear model. Unstimulated and Stimulated datasets
were integrated using the Seurat integration pipeline. Unless
otherwise stated integration functions/pipeline was executed
using default function variables. Integration anchors were calcu-
lated using “cca” reduction, “LogNormalize” as a normalization
method, and “rann” as the Nearest Neighbour method. Inte-
gration resulted in a dataset of 18,295 features across 11,827
cells.

4.4 scRNAseq Analysis

4.4.1 Dimension Reduction and Cluster Identification

The top 30 PCAs were calculated on the integrated dataset and
nearest-neighbors were computed using the top 20 dimensions.
Clusters were determined using a cluster resolution of “0.4”.
UMAP in Figure 1 was generated using top 20 PCA dimensions,
the “uwot” algorithm, n.neighbors = 30, and min.dist = 0.3.
Following UMAP dimension reduction calculation, clusters were
investigated bothwithmanually curated gene signatures andwith
the use of SingleR (version 2.0.0) to classify cells using data from
celldex (version 1.8.0) [45]. Two low abundance clusters were
removed that were identified as either having highmitochondrial
content or a myeloid signature. UMAP projection was recalcu-
lated following the removal of these clusters, using the same
parameters as previously stated. Therefore, after cluster identi-
fication the dataset contained 20,295 features across 11,658 cells
with 5724 cells from the unstimulated treatment condition and
5934 cells from the stimulated treatment condition. Subsequently,
unconventional T-cell clusters were subsetted from the dataset
resulting in unconventional T-cell-only and CD8-only datasets.
UMAP projections were recalculated for these datasets using the
top 20 PCA dimensions, n.neighbors = 50, and a min.dist of 0.1
for the CD8-only dataset or 0.5 for the unconventional T-cell-
only dataset. The unconventional T-cell-only dataset consisted of
20,295 features across 970 cells. The CD8-only dataset consisted
of 20,295 features across 10,688 cells, 5165 of which originated
from the unstimulated treatment condition and 5523 from the
stimulated treatment condition.

4.4.2 Differential Gene Expression

Calculations to determine differentially expressed genes between
clusters or conditions were performed using the Wilcox test
implemented via the standard Seurat analysis pipeline. Analysis
was performed using the RNA data slot of the Seurat object.

4.4.3 Differentially Expressed Transcription Factors

To determine the differential expression of transcription factors,
the list of differentially expressed geneswas cross-referencedwith
a curated database of RNA polymerase II regulated transcription
factors (TFcheckpoint; http://www.tfcheckpoint.org).

4.4.4 Gene Ontology Analysis

Briefly, differentially expressed genes for the ISG cluster were
identified using Seurat’s FindMarkers() function. Genes identi-
fied as significantly (adjusted p.value< 0.5) up- or downregulated
were then passed to the enrichR package (version 3.1) to identify
enriched terms using the GO_Biological_Process_2021 database
[46]. The top 10 enriched terms were then visualized using
SCpubr (version 1.1.1) [47].

4.4.5 Signature Scoring

Signature score was calculated using UCell (version 2.2.0) [48]
with signatures for type I and II IFN obtained from [49].
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4.4.6 Cell–Cell Communication Analysis

Cell-cell communication was performed using the R package
“liana” (version 0.1.12) [50]. In brief, cell–cell communication
networks were calculated using the following methods “natmi”,
“connectome”, “logfc”, “sca”, and “cellphonedb”. The scores from
these methods were subsequently aggregated and only inter-
actions concordant between methods were kept. This analysis
followed the recommended analytical pipeline for the “liana”
package.

4.5 scRNAseq Visualization

4.5.1 Imputation

Imputation of gene expressionwas performed and used in certain
visualizations where indicated. Imputed values were not used for
any downstream analysis and were exclusively used in indicated
visualizations. Imputation was performed using the “RunALRA”
function in SeuratWrappers (version 0.3.1) and increased the
percentage of non-zero values in the dataset from29.63% to 38.95%
[51].

4.5.2 Density-Based UMAP Visualization

The Nebulosa package (version 1.8.0) and scCustomize package
(version 1.1.1) were used to visualize gene expression on UMAP
projections and expression density [52, 53].

4.5.3 Color Scheme

Where possible the uniform, colorblind-friendly batlow [54] color
pallet was used for data visualization. The color palette was
accessed using the Scico package (version 1.3.1) [55].

4.6 Single-Cell TCR Sequencing Analysis

4.6.1 Preprocessing

Single-cell TCR sequencing data were aligned using cell-
ranger pipeline (version 3.1.0) to the human VDJ reference
(vdj_GRCh38_alts_ensembl-3.1.0-3.1.0). TCR data was subse-
quently processed using scRepertoire (version 1.8.0) [56]. TCR
data was filtered such that if cells had multiple alpha or beta
chains identified, only the top expressing chain was retained.
Additionally, unless otherwise stated, clone identity was defined
by the CDR3 amino acid sequence.

4.6.2 Clone Size Definitions

Abundance of clones was calculated per stimulation condition
and binned according to the following definitions. Single (x = 1),
small (1 < x < = 5), medium (5 < x ≤ 10), large (10 < x ≤ 20) and
hyperexpanded (20< x ≤ 150). Where x = number of cells with
exact CDR3 amino acid sequence. Size cut-offs were determined

empirically using summary statistics of clone abundances across
the dataset.

4.7 External Datasets

4.7.1 uTILity

The pan-cancer “uTILity” dataset was acquired from [25] circa
13.10.2022. The dataset was filtered to retain only cells identified
as CD8 T-cells and only Tumor and Normal tissue types were
retained. The subsetted dataset was normalized and reintegrated
using the harmony package (version 0.1.1) to remove “Cohort”
effect [57]. UMAP coordinates and clusters were recalculated
following harmonization, using the standard Seurat analysis
pipeline.

4.7.2 HNSCC

For validation of ISG gene signature and cell-cell communication
analysis, theHNSCCTILs dataset published in [24]was used. Pro-
cessed data were downloaded from (GSE139324) [https://www.
ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE139324].Metadata
for this dataset was obtained through contact with the lead
author/s.

4.7.3 COMBAT Dataset

The Covid-19 and Influenza scRNAseq dataset was downloaded
from [58] https://zenodo.org/records/6120249.

4.8 Figure Preparation

Figures were arranged and formatted using Adobe Illustrator
(version 27.5) and/or GraphPad Prism (version 9).
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