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Mapping the immune environment in clear cell
renal carcinoma by single-cell genomics
Nicholas Borcherding1,2,3,11, Ajaykumar Vishwakarma 4,5,6,11, Andrew P. Voigt2, Andrew Bellizzi7,

Jacob Kaplan 7, Kenneth Nepple3,8, Aliasger K. Salem 3,4, Russell W. Jenkins 5,6,12✉,

Yousef Zakharia 3,8,9,12✉ & Weizhou Zhang 3,7,10,12✉

Clear cell renal cell carcinoma (ccRCC) is one of the most immunologically distinct tumor

types due to high response rate to immunotherapies, despite low tumor mutational burden.

To characterize the tumor immune microenvironment of ccRCC, we applied single-cell-RNA

sequencing (SCRS) along with T-cell-receptor (TCR) sequencing to map the transcriptomic

heterogeneity of 25,688 individual CD45+ lymphoid and myeloid cells in matched tumor and

blood from three patients with ccRCC. We also included 11,367 immune cells from four other

individuals derived from the kidney and peripheral blood to facilitate the identification and

assessment of ccRCC-specific differences. There is an overall increase in CD8+ T-cell and

macrophage populations in tumor-infiltrated immune cells compared to normal renal tissue.

We further demonstrate the divergent cell transcriptional states for tumor-infiltrating CD8+

T cells and identify a MKI67+ proliferative subpopulation being a potential culprit for the

progression of ccRCC. Using the SCRS gene expression, we found preferential prediction of

clinical outcomes and pathological diseases by subcluster assignment. With further char-

acterization and functional validation, our findings may reveal certain subpopulations of

immune cells amenable to therapeutic intervention.
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ccRCC is the most common type of renal cell carcinoma,
comprising more than 70% of all renal cancers1. ccRCC
represents an immune sensitive tumor type and is known for

early advances in systemic immunotherapy using T-cell prolifera-
tion cytokine IL-2 and interferon (IFN)-α2b therapy2. Recent novel
immunotherapies targeting immune checkpoints as standard of
care have transformed the treatment paradigm of ccRCC3,4.
However, a substantial subset of renal cancer patients do not
respond to these therapies and patients who initially do respond
eventually progress5,6. Cytotoxic tumor-infiltrating lymphocytes
(TILs), in particular CD8+ T cells are key effectors of the adaptive
antitumor immune response7 and abundance of CD8+ T cells in
solid cancers is generally associated with better survival in cancer
patients8–11. However, in ccRCC, immune cell abundance is
inversely correlated with survival, specifically TILs including CD8+

T cells12–15. Biomarker analysis results from recent clinical trials
also supported the negative prognostic significance of T-cell infil-
trates in the absence of immunotherapy within treatment-naive
ccRCC patients16,17. Other abundant immune players in the ccRCC
tumor microenvironment include monocytes, dendritic cells, and
TAMs18 that are now just starting to be studied.

Quantifying and inferring immune cell abundance from tran-
scriptional analysis of bulk tumor samples is inadequate to provide
a clear picture of the immune cell types19,20. While these studies are
suggestive, they lack single-cell resolution for characterizing het-
erogeneous cell subpopulations that ultimately shape antitumor
response, as has been demonstrated in breast cancer and
melanoma21,22. Single-cell methodologies including flow cytometry,
immunohistochemistry, and mass cytometry14,18,23 have revealed
immune cell states in ccRCC as discrete phenotypes when in vivo
they typically display diverse spectrum of differentiation or activa-
tion states. Also, these methods require use of antibody panels
targeting known immune cell components, and by design are not
capable of identifying novel subpopulations of cells. SCRS has
enabled comprehensive characterization of heterogeneous lymphoid
and myeloid immune cells in several cancers24–27, providing an
unbiased approach to profiling cells and enabling molecular clas-
sification of different subpopulations and identification of novel
gene programs. Transcriptomic mapping of T-lymphocytes coupled
with TCR sequencing allows additional measurement of clonal
T-cell response to cancer at an unprecedented depth28,29.

Here, we report the single-cell profiling of the immune land-
scape in ccRCC mapping 25,688 of immune single cells
(5′-sequencing and recombined V(D)J region of the T-cell
receptor) in matched tumor samples and peripheral bloods from
three treatment-naive ccRCC patients. We further integrated an
additional, 11,367 immune cells isolated from peripheral blood
and renal parenchyma30 providing controls to evaluate tumor-
specific transcriptional and clonal changes in immune populations
at the single-cell level. Analysis of tumor-infiltrating T cells
demonstrated distinct expression changes compared to peripheral
blood and normal renal parenchyma. Clonal structure of T cells
differed—with marked expansion seen in CD8+ T cells but not
CD4+ T cells—and was associated with transcriptional patterning
revealed by cell trajectory analysis. In myeloid cells, we observed
an overall increase in macrophage populations with mixed
polarization across patients. Predictive models derived from the
CD8+ T cells and TAMs identified worse overall survival asso-
ciated with proliferative CD8+ T cells and CD207+ TAMs. This
represents the first such report of the immune landscape of ccRCC
using SCRS for both transcriptional and clonal assessment.

Results
Single-cell expression profiling of immune cells in ccRCC. In
order to define the immune microenvironment of human ccRCC,

we performed SCRS on flow-sorted lymphoid and myeloid cells
from tumors and matched peripheral blood from three
treatment-naive ccRCC patients. The general workflow for iso-
lation and sequencing is available in Supplementary Fig. 1. To
these samples, we added immune cells from peripheral blood and
normal renal parenchyma30 to obtain an integrated UMAP
projection of 22 clusters across 37,055 primary immune cells
(Fig. 1a). Across the three tissues, peripheral blood (n= 21,160),
tumor (n= 12,239), and normal kidney (n= 3556), we found a
number of clusters—notably clusters 0, 1, 3, and 7—sharing
similar gene expression (Fig. 1b). Despite the integration of
sequencing runs to reduce tissue-type divergence, each tissue type
had enrichment for distinct clusters: peripheral blood formed the
majority of Cluster 2, tumor tissues were enriched within Clusters
14, 17, 18, and 19, and normal kidney was enriched within
Cluster 11. Based on gene expression, we assigned cell lineages to
each cluster using a three-method approach: (1) expressions of
canonical markers for T cells (CD3E, CD8A, CD4, and IL7R or
CD127), B cells (CD19 and MS4A1), myeloid cells (CD14 and
FCGR3A or CD16), and natural killer (NK) cells (KLRD1 and
NKG7) (Fig. 1c), (2) correlations with gene signatures derived
from purified cell populations deposited by ENCODE31 (Fig. 1d),
and (3) assignments of T-cell clonotypes based on the TCR
sequencing. Based on these approaches we annotated clusters as
monocytes (Clusters 0, 5, 11, 12, and 16), CD4+ T cells (Clusters
4, 6, 10, 13, 15, and 20), CD8+ T cells (Clusters 1, 8, 9, and 17),
NK cells (Clusters 3 and 7), B cells (Cluster 2), macrophages
(Cluster 14), and dendritic cells (DC, Clusters 18 and 19)
(Fig. 1e). We also examined the relative proportion of cell types
comprising the sequencing runs by tissue type (Fig. 1e). We
observed a decrease of CD4+ T cells and B cells within normal
kidneys or tumors relative to peripheral blood (Fig. 1e). Con-
versely and as expected, we also found an increase of CD8+

T cells and macrophages in tumors relative to peripheral bloods
(Fig. 1e). Using high throughput immunohistochemistry on
paired normal and tumor tissue, we found similar trends of
increased CD8+ and decreased CD4+ T cells from tumor versus
normal renal tissue derived from the ccRCC patient samples
(Supplementary Fig. 2 and Supplementary Methods).

Preferential overlap between peripheral blood and tumor
CD8+ T lymphocytes. With the extensive literature demon-
strating the role of TCR expansion in antitumor immunity and
immunotherapy11, we first wanted to investigate the dynamics of
CD4+ and CD8+ T-cell clonal species in ccRCC. Using our
previously described scRepertoire software32, we assigned pro-
ductive TCR sequences for TCRA and TCRB and defined clo-
notypes by the combination of both the genes and nucleotide
sequences. For the identified T cells in ccRCC patients, recovering
of at least one TCR chain, ranged from 74.8 to 87.6% after fil-
tering and clonotype reconstruction. The complete table of clo-
notype information for the ccRCC samples is available in
Supplementary Data 1. T-cell clonotypes had a clear distribution
along the UMAP, with principal enrichment within Clusters 1, 4,
6, 8, 9, 13, 15, 17, and 20 (Fig. 2a). Cluster 21 was the exception
for T cells, consisting of an estimated 19.6% of doublets and
clustering with B cells, possibly indicating the cell–cell interaction
of B and T cells and were excluded from further T-cell analyses.
The frequency of clonotypes was assigned across patient samples,
allowing for the quantification of clonotype numbers in the
context of individual patients. We observed an increase in clo-
notype frequency principally in the CD8+ T-cell clusters (Fig. 2a).
There were expanded clonotypes in assigned NK cell clusters 3
and 7, however, these clonotypes were also seen in other T-cell
clusters, suggesting a possible subset of T cells with overlapping
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gene expression with NK cells or NK T cells. Single clones and
clones with 1–5 copy numbers were seen across myeloid clusters
(Fig. 2a), which may be a result of partial loss of finer gene
expression differentiation during the expression integration33.
Separating the T-cell classes, we noted a stark difference in clo-
notype space occupied by the top 10 clones in the CD8+ T cells
compared to CD4+ T cells across ccRCC patients (Fig. 2b). This
trend was consistent between the tumor-infiltrating and periph-
eral blood CD8+ T cells (Fig. 2b). We next asked if this

consistency in CD8+ T-cell expansion was a result of shared
expanded clonotypes between tumor and peripheral blood. We
found a relative patient-specific increase in shared clonotypes in
CD8+ T cells compared to CD4+ T cells (Fig. 2c). We also noted
that there was minimal overlap between patient clonotypes for
both CD8+ and CD4+ T cells (Fig. 2c). The patient-specific
overlap of CD8+ clonotypes showed relatively larger pools in
peripheral-blood clonotypes contributing to the tumors (Fig. 2d).
Interestingly, Patient 3—with the more advanced tumor stage

Fig. 2 Clonal dynamics vary by T-cell types and patients. a UMAP of 37,055 primary immune cells overlaid with the frequency of clonotypes assigned by
sample identification. b Occupied repertoire space for the indicated clonotype groups for CD8+ and CD4+ T cells by sample and tissue type in ccRCC
patients. c Clonal overlap quantification by overlap coefficient for CD8+ and CD4+ T cells by sample and tissue type in ccRCC patients. d The top ten
clonotypes for each patient as a relative proportion of clonotypes for corresponding peripheral or tumor populations. Each color represents a unique
clonotype by patient. e Distribution of clonotypes by tissue, UMAP cluster and ccRCC patient with highlighted (red) the top two clonotypes, comprising
tumor-specific clonotypes across all clusters.

Fig. 1 Single-cell RNA sequencing results from immune cells in ccRCC. a UMAP of 37,055 primary immune cells of peripheral blood, normal renal
parenchyma and tumor-infiltrating ccRCC patients. b Distribution of cells by tissue type, peripheral blood (blue), tumor (red), and kidney (light blue).
Arrows indicated potential enriched or unique immune cells populations for tissue type. c Percent of cells expressing canonical immune cell markers across
the UMAP. d Normalized correlation values for predicted immune cell phenotypes based on the SingleR R package for each cluster; dendrogram based on
Euclidean distance. e UMAP demonstrating inferred immune cell types in ccRCC, clusters are colored by cell type and proportion of single-cell
per sequencing run by tissue type. P values based on one-way ANOVA; lack of labeled p values equates to value >0.05.
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(pT3a compared to T1 of Patient 1 and 2)—showed expansion in
tumor-specific clonotypes that was not seen in the blood (Fig. 2d).
In the more advanced Patient 3 ccRCC, two clonotypes accounted
for a total of 619 CD8+ T cells and were distributed across
UMAP clusters (Fig. 2e), which supports the notion that T-cell
clonotype is neither a determinant for UMAP clustering nor for
functional indication. This compartmentalization of clonotypes
associated with exhausted gene expression may reflect origin of
the expansion in the tumor itself34.

CD8+ T cells in ccRCC tumors exhibit a transcriptional con-
tinuum with distinct populations. Subclustering of CD8+ T cells
revealed eight distinct clusters (Fig. 3a) with relative tissue-
specific distribution (Fig. 3b). To understand the distribution of
these new CD8+ subclusters along the UMAP, we first examined
the relative percent of single cells represented in each cluster by
tissue type. Tissue-infiltrating CD8+ T cells (both tumor and
normal kidney) comprised the majority of CD8_0, CD8_1,
CD8_3, CD8_5, CD8_6, and CD8_7. Only Clusters CD8_2 and
CD8_4 had increased relative levels of peripheral-blood cells
(Fig. 3b). Going from right to left across the x-axis of the UMAP,
there is a change in tissue-specific contribution starting from
peripheral blood (right) to kidney (middle) to increasing levels
of ccRCC tumor CD8+ T cells (left), which may represent the

process of tissue infiltration itself. Within SCRS literature, there
are concerns for variations in cell cycle leading to increased
heterogeneity or obscure subpopulations35, however proliferation
of CD8+ T cells is an important surrogate marker of antitumor
immune response7. We next examined the variation in pro-
liferative gene signatures, finding a similar distribution to the
tissue-type with increasing cells in S or G2M phases from right to
left, peaking with Cluster CD8_6 (Fig. 3c).

In order to better characterize the CD8+ clusters, we used
canonical and differential T cells markers to examine gene
expression differences along the UMAP (Fig. 3d) with several
patterns. The first pattern was the discovery of a naïve CCR7+

SELL+ TCF7+ being seen in CD8_4 (Fig. 3d). Looking for effector
CD8+ T cells, we next observed two populations of IFNG+

PRF1+ T cells, principally in CD8_1 and CD8_0 (Fig. 3d). The
latter also expressed immune checkpoints, such as CTLA4,
HAVCR2, PDCD1, and TIGIT (Fig. 3d). These immune
checkpoints were expressed at more moderate levels in both
CD8_5 and CD8_6; however, CD8_6 exclusively expressed a
number of proliferation markers, such as CDK1, MKI67, STMN1,
and TOP2A (Fig. 3d). In order to examine gene expression
patterns above single or selected genes, we used slingshot36 to
build minimum spanning trees between subclusters, generating
curves based on the most varied genes (Fig. 3e). We identified five
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distinct curves (labeled B1 to B5) with the origin in the CCR7+

SELL+ TCF7+ CD8_4. With the exception of B1 extending into
CD8_2, the remaining curves graphed along a similar trajectory
with a common node of CD8_1 and branching at distinct clusters
with increased levels of tumor-infiltrating CD8+ T cells (Fig. 3e).
These curves also varied by CD8+ T clonotypes based on TCR
sequencing, with the root having no clonal expansion and the B3,
B4, and B5 curves terminating into regions with higher levels of
clonal expansion compared to B1 or B2 (Fig. 3e). This clonotype
relationship was also observed in specific clonotype sequences
with overlapping clonotypes seen in subclusters CD8_0, CD8_6,
CD8_5, and CD8_3 (Fig. 3f). In contrast, CD8_7 had minimal
overlapping clonotypes with other subclusters (Fig. 3f). This
relationship was seen also independent of the individual patient
sequenced (Supplementary Fig. 3). In order to assess possible
functional differences based on these branching, we performed
gene set enrichment analysis (Fig. 3g)37. As expected based on the
immune checkpoint inhibitors expression (Fig. 3d), Clusters
CD8_0 and CD8_5 showed increased terminal differentiation and
exhaustion (Fig. 3g). Cytolytic gene enrichment was seen in
CD8_1, the PRF1+ IFNG+ population lacking immune check-
points (Fig. 3g). The highly proliferative CD8_6 population was
enriched for metabolic activity, such as the tricarboxylic acid cycle
and glycolysis, and DNA repair (Fig. 3g). The B2 curve
termination cluster, CD8_7, has preferential enrichment of
cytokine signaling, such as IL-2/STAT5, TGFβ, and type 1 IFN
(Fig. 3g). With immune checkpoint inhibitor responsiveness
associated with distinct CD8+ T-cell populations22, we next
examined enrichment of signatures associated with response or
nonresponse to anti-PD-1 therapies (Fig. 3h). Using the ordinal

construction of the trajectories, we created a pseudotime variable
for cells, allowing us to see the difference in the enrichment along
the curves. This approach found an overall enrichment in gene
expression associated with responsiveness to anti-PD-1 at the
terminal points of curve B2 and midpoints of B3, B4, and B5,
corresponding to cells in CD8_1 (Fig. 3h, blue lines). Likewise, we
observed an overall increase in gene expression associated with no
response or progression on anti-PD-1 therapy at the terminal
points of curves B3, B4, and B5 (Fig. 3h, red lines).

Single-cell CD4+ T-cell characterization in ccRCC identifies
disparate intratumoral populations. CD4+ T cells can influence
cancer pathogenesis in various ways, either directly through
cytolytic mechanisms or indirectly by modulating the tumor
immune microenvironment. Subclustering of CD4+ T cells
revealed nine distinct clusters (Fig. 4a), with a similar pattern—as
seen in CD8 T cells—of tissue distribution with predominantly
peripheral-blood CD4+ T cells on the right leading to tissue-
infiltrating CD4+ T cells on the left (Fig. 4b). The CD4_8 was
composed solely of peripheral-blood cells from the healthy donor
and was eliminated from the remaining analysis. Like the CD8+

T cells, we next examined the canonical and differential T-cell
markers along the UMAP (Fig. 4c). The first pattern that emerged
was a naive CCR7+ SELL+ TCF7+ being seen in CD4_1 and
CD4_3 (Fig. 4c). Within the tumor-infiltrating CD4_4 cluster, we
observed increased expression of the Th1 driver TBX21 (T-bet),
activation marker LAG3 and NR4A2 and cytokine expression
(Fig. 4c). Both CD4_5 and CD4_7 had expression of regulatory
T (Tregs) cell markers (Fig. 4c), with higher levels of FOXP3,
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subclusters. f Top ten markers for TI-predominant CD4+ subclusters. Size of points are relative to percent of cells in the subcluster expressing the
indicated mRNA species. g Z-transformed normalized enrichment scores from ssGSEA for selected gene sets by subcluster.
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IL2RA (CD25), CTLA4, and TNFRSF18 (GITR) in the tumor-
predominant CD4_5 (Fig. 4c).

Constructing the cell trajectory curves based on the CD4+

subclustering, we observed two root points of the CCR7+ SELL+

TCF7+ Clusters CD4_1 and CD4_3 leading to a common CD4_4
termination (Fig. 4d). Unlike the other CD4+ T cells, the curve
generated for Tregs was divergent, starting at CD4_5 through
CD4_7 and into CD4_4 (Fig. 4d). This likely represents a distinct
expression pattern for Tregs (shared by CD4_5 and CD4_7)
compared to other tumor-infiltrating CD4+ T cells. In addition,
compared to the CD8+ subclustering, modest clonal expansion
was seen in CD4_4 and CD4_5 and was not a clear pattern for
cell trajectory (Fig. 4e). With the common termination point for
the curves at Cluster CD4_4, we next wanted to examine if there
are common markers for CD4+ T-cell infiltration in ccRCC by
comparing tumor-infiltering to peripheral-blood CD4+ T cells.
Within the tumor-infiltrating CD4+ T cell, 203 genes adjusted
p value <0.05, log-fold change ≥0.5 and Δ cell percent >10%
(Supplementary Data 2). Upregulated within the tumor-
infiltrating CD4+ T cells were heat shock proteins (HSPA1A
and HSPA1B), Jun and FOS constituents (FOS, JUN, and JUNB),
MHC-II molecules (HLA-DRB), and secreted molecules (CCL5,
GZMA, and GZMK) (Fig. 4f). Several of the upregulated genes are
shared across all the tumor-predominant CD4 Clusters (Fig. 4f);
however, each cluster also had unique expression markers. Both
CD4_2 and CD4_4 had increased levels of IFNG (Fig. 4f), but
CD4_2 was enriched for heat shock proteins, while CD4_4 had

a cytotoxic component and there was expression of CD8A, which
likely represents modest contamination of CD8+ T cells (Fig. 4f).
The tumor-infiltrating Tregs, CD4_5, had high levels of CTLA4,
GITR (TNFRSF18) and TIGIT. In addition, CD4_5 had the
highly-specific expression CCR8 and LAYN, corresponding to
previous reports38,39. The CD4_6 cluster had increased expres-
sion of the IL-6 cytokine, OSM6, and AREG and SOCS3,
downstream of interleukin signaling (Fig. 4f). The differential
expression closely matched the pathway analysis, with CD4_4
enriched for cytolytic and type I IFN signaling (Fig. 4g). The
CD4_5 and CD4_7 Treg cluster had preferential enrichment for
metabolic pathways, with high levels of terminal differentiation in
tumor-infiltrated CD4_5 (Fig. 4g). The OSMhigh CD4_6 was
enriched for IL-6/JAK/STAT3 signaling and inflammatory
response genes (Fig. 4g).

Prominent infiltrating macrophages in ccRCC have transcrip-
tional divergence. With the previous observation of an overall
increase in macrophages and decreased monocytes in the inte-
grated UMAP (Fig. 1e), we next focused on differential analyses
of the myeloid populations (Fig. 5a). Across monocytes, macro-
phages and dendritic cells, subclustering found 20 distinct clusters
(Fig. 5a). Tissue-specific distribution was observed, with the
majority tumor-infiltrating myeloid cells in subclusters 0, 3, 7, 8,
and 15 (Fig. 5b). In contrast, both normal kidney parenchyma
and peripheral blood were comprised of a majority of monocytic
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subclusters (Fig. 5b). Populations were assigned using canonical
markers and in addition to the previously described singleR
approach with macrophage subclusters (0, 3, 7, 13, and 14)
identified using markers such as CD1C, CLEC10A (CD301),
FCER1A, and MSR1 (Fig. 5c). In total, we observed a decreased
proportion in CD14+ monocytes in tissue-infiltrating myeloid
cells compared to peripheral blood and an increase in macro-
phages (Fig. 5d). Normal renal parenchyma had a variable
increase in CD14− CD16− monocytes, which was not significant
(Fig. 5d). As previously seen, we found a small number of DC
(subclusters 15, 16, and 19) with distinct expression profiles
associated with conventional DC1 (cDC1), plasmacytoid DC
(pDC), and monocyte-derived DCs (moDC), respectively (Sup-
plementary Fig. 4).

Next we isolated the five macrophage subclusters, relabeling
them tumor-associated macrophage 1 (TAM_1), TAM_2,
TAM_3, resident macrophage (rM), and peripheral macrophage
(pM) based on the relative percent of cells derived from the
respective tissue (Fig. 5e). Although similar in distribution along
the UMAP, which preserves global structure of expression, these
five clusters had distinct expression patterns (Figs. 1e, 5e). For
example, the CD88high (C5AR1) CD54+ (ICAM1) TAM_1
expressed increased levels of chemokines and cytokines, like
CCL3, CCL4, CXCL2, and IL10; CD64high (FCGR1A) CD16high

(FCGR3A) TAM_2 subcluster expressed the apolipoprotein gene
APOE, lysosomal lipase (LIPA), and ferroportin (SLC40A1); and
CD1Chigh CD86+ TAM_3 had high levels of IL1R2 and
Langerhin (CD207), a marker of the skin-resident Langerhans
cells (Fig. 5f). The pM subcluster had the highest level of the cell
adhesion molecules CLEC10A, SELL (CD62L), and ITGB7, which

can dimerize with ITGA4 (CD49d) or ITGAE (CD103). Like the
CD8+ T cells, we built cell trajectories based on varied genes and
found two distinct curves converging into TAM_3 and pM
(Fig. 5g). In order to assess potential functional differences for the
macrophages, we performed gene set enrichment analysis
(Fig. 5h). As previously observed in single-cell data25, no
subclusters were distinctly M1 or M2 polarized. For example,
TAM_1 had enrichment for gene sets commonly associated with
the M2 macrophage compartment, such as angiogenesis and the
production of lipid mediators, while also having the highest levels
of TNFɑ signaling enrichment, a common M1 macrophage
characteristic. Across the three TAM subclusters, modest
enrichment in both type 1 and type 2 IFN signaling was observed
(Fig. 5h). The non-TAM subclusters, rM and pM, had relatively
lower levels of enrichment with the exception of proinflammatory
signaling and glycolysis, respectively (Fig. 5h). We also found an
increase in antigen processing and presentation of lipid antigens
via MHC-I in TAM_2 and TAM_3, while TAM_1 had higher
enrichment for polysaccharide antigens (Supplementary Fig. 5).

Differential prognostic significance in CD8+ T cell and TAM
subclusters. These data demonstrate transcriptional differences in
CD8+ T cells and TAMs in ccRCC. To determine if these tran-
scriptional differences led to functional differences in tumor
response, we investigated whether gene signatures can be devel-
oped from our SCRS data with prognostic values (Fig. 6a). Using
the Cancer Genome Atlas data set for ccRCC19, we separated the
cohort in half, yielding a training and testing set. We isolated
significantly upregulated genes from each subcluster of CD8+
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T cells and macrophages selecting the top models for each cell
type based on training results. Interestingly, we saw a consistently
high performance for overall survival discrimination in CD8_6
and TAM_3-based signatures across all models we trained and
different sizes of gene signatures. Applying the models to the
testing cohort of 267 primary tumors, we found that both sig-
natures had strong performance and categorized roughly 25% of
ccRCC into poor prognostic groups and equating to hazard ratios
of 3.44 and 2.59, respectively (Fig. 6b). We also observed that the
poor-prognosis predictions were associated with increasing his-
tological grades (Fig. 6c). There was not a clear association in
expression by histological grade across genes in each signature
(Supplementary Fig. 6). However, there was a significant asso-
ciation between the CD8_6 and TAM_3 classifications, which
shared a high degree of overlap in patients classified into good-
prognosis (188 in both signatures) and poor-prognosis (35 in
both signatures), Fisher p value= 9.3e−15. Interestingly despite
this close association, the CD8_6 signature was more broadly
applicable in discriminating overall survival across TCGA data
sets (Supplementary Fig. 7).

Moving beyond mRNA expression, we wanted to see if we
could identify the proliferative CD8_6 subcluster in tumor
samples. Using mass cytometry data for T cells isolated from
four healthy tissue samples, 68 ccRCC primary tumors, and four
ccRCC metastasis, we identified a PD-1+ Ki-67Hi subset in 14.6%
of a CD45+ CD3+ CD8+ T cells (Fig. 6d). The majority of CD45+

CD3+ CD8+ T cells were either PD-1+ Ki-67− (42.4%) or PD-1−

Ki-67− (39%) (Fig. 6d). In addition to PD-1, this proliferative
subset of CD8+ T cells in ccRCC had increased levels of CTLA-4,
ICOS, 4-1BB (CD137), TIM-3, HLA-DR, and CD38 compared to
the other CD45+ CD3+ CD8+ T cells (Fig. 6e). Calculating the
proportion of PD-1+ Ki-67Hi cells to total CD8+ T cells by
sample, we categorized samples into thirds. We observed a similar
distribution to the CD8_6 gene signature assignments of the
highest tertile for PD-1+ Ki-67Hi cells in more advanced
histological grades (Fig. 6f).

Discussion
With the improved understanding on how immunotherapies
work, the phenotypic and functional profile of immune cells in
the tumor microenvironment is now well known to influence
prognosis and disease outcome. Comprehensive knowledge of
gene signatures to fully understand the roles of specific immune
populations in cancer is of high pathological relevance; not only
in identifying dysregulated immune determinants of cancer
progression, but also as a useful tool for selecting patients, eval-
uating the likelihood of benefit from immunotherapy and further
identifying clinically significant subpopulations.

Despite immunotherapy being a mainstay of treatment for
advanced and treatment-naive ccRCC3,40,41, ccRCC tumors have
numerous counterintuitive immune findings compared with
other immunotherapy-responsive tumors42. For example, unlike
other tumors that respond to immune checkpoint blockade,
ccRCC has a relatively low tumor mutational load, which is
thought to drive T-cell infiltration19,43, and mutational burden in
ccRCC is not associated with response to anti-PD-1 therapy15.
Moreover, despite this low mutational burden, ccRCC has the
highest T-cell infiltration score among tumor types within the
TCGA44. Similarly, therapeutic responses to anti-PD-1 therapy
have been correlated with HLA heterozygosity in lung cancers
and melanoma45, which does not seem to be the case for
ccRCC15. Taken together, these disparate findings suggest a more
complex interrelationship of the immune compartment for
ccRCC tumors. While a few recent studies have explored human
ccRCC at a single-cell level30,34,46,47, the technique has not yet

been applied to tumor-infiltrating immune cells to characterize
the global transcriptional immune and T-cell receptor landscape
along with underlying mechanisms contributing to this unique
tumor environment.

T cells are recognized as key effectors of the adaptive antitumor
immune response. Several studies have demonstrated association
of these cells with an unfavorable response to therapy and poor
patient survival in ccRCC6,13. In a comprehensive study, T cells
represented the dominant lymphocytic population in most ccRCC
cases and B cells were rarely detected23, consistent with our
findings of increased CD4+ and CD8+ T cells (Fig. 1). We found
that the blood CD8+ T cells are non-heterogeneous and poorly
reflect tumor-infiltrating CD8+ T-cell transcriptional profiles
(Fig. 3a, d). Organizing the structure of the CD8+ T-cell manifold,
we found four distinct branches that may represent transcriptional
states upon tumor infiltration, two associated with a PD-1+ TIM-
3+ exhausted subcluster, a proliferative subcluster, and a fourth
with the higher levels of cytokine signaling (Fig. 3e, g). The latter
cluster, CD8_7 was also unique with minimal overlap in clono-
types compared to the other tumor-infiltrating predominant
subcluster. Recent single-cell analyses in melanoma showed CD8+

T cells with lower activation and exhausted expression patterns
were associated with improved anti-PD-1 responses22. These
responsive T cells had minimal shared clonotypes, similar to
CD8_722. Other studies have found the ccRCC tumors polyclonal
CD8+ T cells with an “immune-regulated” phenotype and lower
cytotoxicity compared to tumors with oligoclonal CD8+ T cells48.
Recent SCRS studies of pre- versus post-treatment of anti-PD-1 in
basal cell carcinoma have found increased number and clonal
expansion of CD39+ CD8+ T cells after immunotherapy49.
However, CD39+ CD8+ T cells in ccRCC have been shown to be
associated with increased pathological stage and poor overall
survival50. Based on gene expression, our CD8_0 and
CD8_6 subclusters closely fit this population of cells and these
clusters had 57% and 46.5% of cells from the advanced-stage
Patient 3, respectively. In developing the CD8 signature, we found
that the model discriminated overall survival, but also was asso-
ciated with increasing histological grade, suggesting that more
aggressive histological features are also correlated with a unique
transcriptional response (Fig. 6b, c). Interestingly, patients with
higher numbers of CD39+ CD8+ T cells had improved responses
to sunitinib, a multi-tyrosine kinase inhibitor, suggesting that
evaluation of exhausted phenotype for CD8+ T cells may help in
clinical decision making or therapy selection50. This is particularly
interesting as we found shared CD8+, but not CD4+, T-cell clo-
notypes in the corresponding peripheral blood of ccRCC patients
(Fig. 2). Although we find a stable overlap coefficient of around
13% for CD8+ clonotypes, more work is needed to assess the
dynamics of infiltration versus exfiltration on the CD8+ T lym-
phocytes into the tumor bed.

The exhausted CD8+ T-cell phenotype has been associated
with advanced histological features and increased risk of disease
progression44,48,50, increased dysfunctional DC6, and increased
macrophage populations18. However, controversy surrounds the
role of myeloid populations in ccRCC tumor prognosis and
progression. This may, in part, be a result of transcriptional and
phenotypic plasticity of tumor-infiltrating myeloid cells18,25. Our
analysis demonstrated distinct CD16+ myeloid population
derived within tumor compared to peripheral blood or normal
renal parenchyma and an overall increase in tumor-associated
macrophages (Fig. 5a, d). M2 markers, like CD163 and CD204,
have been associated with poor clinical outcomes in ccRCC18,51

and were the highest in the TAM_1 and TAM_2 subclusters
(Fig. 5g). This is despite no clear identification of canonical M1 or
M2 macrophages subclusters (Fig. 5h). Model training for gene
signatures for TAMs found better overall discrimination using
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genes derived from TAM_3 (Fig. 6b), a subcluster that was
unique for having lower levels of gene enrichment for M2 mac-
rophages, angiogenesis, and lipid mediator production (Fig. 5h).
The TAM_3 classification had an independently high degree with
the CD8_6, suggesting the possible interaction or coordination
between lymphoid and myeloid cells in ccRCC. The increased
immunogenicity of ccRCC has been tied to upregulation of the
antigen presenting machinery expression through MHC-I44.
Across the myeloid subclustering, there was gene enrichment for
MHC class I processing and presentation machinery in the DC
subsets, while the macrophages had increased MHC class II
enrichment (Supplementary Fig. 5). Although several distinct DC
populations were detected and there was a trend for increase in
cDC1 subset (subcluster 15) with known function of tumor
antigen cross-presentation, further analysis was limited by the
total number of DCs isolated.

Our strategy of single-cell analysis performed on immune cells
taking into consideration the frequencies of lymphoid and mye-
loid cells during flow sorting provides a powerful way to identify
the relationship between proportion of cell types and corre-
sponding immune cell states. With the population structure and
gene programs defined in our study for multiple immune
populations, we showed that though the patients showed variable
proportions of lymphoid and myeloid in each cell state, the
number of states remain limited. Our study has limitations,
including the small total number of samples (n= 7), the rarity of
certain cell populations, and the need for further functional
characterizations of these immune populations. However, taken
together, we provide a transcriptional and clonotypic map of
ccRCC immune cells that in hope to gain insight into biomarkers
and therapeutic targets in ccRCC.

Methods
Subject details and tissue collection. Paired blood and primary ccRCC along
with matched normal kidney parenchyma samples were obtained from the Uni-
versity of Iowa Tissue Procurement Core and GUMER repository through the
Holden Comprehensive Cancer Center from de-identified three subjects previously
provided written consent approved by the University of Iowa Institutional Review
Board (IRB) under the IRB number 201304826 and conducted under the
Declaration of Helsinki Principles. The patients were males with an age range of
67–74 years old. Tumor grades were histologically determined by a pathologist.
Primary tumor stages for Patient 1 and Patient 2 were reported as pT1b without
extension, while Patient 3 was reported as pT3a with renal vein invasion.

Tumor dissociation and isolation of mononuclear cells. Renal tumor samples
were dissociated into single cells by a semi-automated combined mechanical/
enzymatic process. The tumor tissue was cut into pieces of (2–3 mm) in size and
transferred to C Tubes (Miltenyi Biotec, Bergisch Gladbach, Germany) containing
a mix of Enzymes H, R and A (Tumor Dissociation Kit, human; Miltenyi Biotec).
Mechanical dissociation was accomplished by performing three consecutive auto-
mated steps on the gentleMACSTM Dissociator (h_tumor_01, h_tumor_02, and
h_tumor_03). To allow for enzymatic digestion, the C tube was rotated con-
tinuously for 30 min at 37 °C, after the first and second mechanical dissociation
step52. Cells from fresh tumor specimens were incubated with FcR blocking reagent
(StemCell Technologies, Vancouver, Canada) for 10 min at 4 °C and labeled with
1 µg/ml of the FITC anti-human CD45 antibody (BioLegend, San Diego, CA) per
107 cells for 20 min at 4 °C. CD45+ cells were isolated using the EasySepTM FITC
Positive Selection Kit (StemCell Technologies). Alternatively, mononuclear cells
from whole peripheral blood of paired subjects were isolated using SepMate Tubes
(StemCell Technologies) by density gradient centrifugation. Cells were then viably
frozen in 5% DMSO in RPMI complemented with 95% FBS. Cryopreserved cells
were resuscitated for flow cytometry analyses by rapid thawing and slow dilution.

Cell sorting for single-cell RNA sequencing. Viable immune (CD45+ Hoechst−)
single-cell suspensions generated from three ccRCC tumor samples and blood were
FACS sorted on a FACS ARIA sorter (BD Biosciences) for lymphoid and myeloid
cells (ratio 3:1). This was to consistent sequencing depth for both myeloid and
lymphoid cells across the three patients, as myeloid cells have 3–10-fold greater
feature expression. The cells were sorted into ice-cold Dulbecco’s PBS+ 0.04%
non-acetylated BSA (New England BioLabs, Ipswich, MA). Sorted cells were then

counted and assessed viability MoxiGoII counter (Orflo Technologies, Ketchum,
ID) ensuring that cells were resuspended at 1000 cells/µl with a viability >90%.

Library preparation, single-cell 5′, and TCR sequencing. Single-cell library
preparation was carried out as per the 10× Genomics Chromium Single-Cell 5′
Library and Gel Bead Kit v2 #1000014 (10× Genomics, Pleasanton, CA). Cell
suspensions were loaded onto a Chromium Single-Cell Chip along with the reverse
transcription (RT) master mix and single-cell 5′ gel beads, aiming for 7500 cells per
channel. Following generation of single-cell gel bead-in-emulsions (GEMs), RT was
performed using a C1000 Touch Thermal Cycler (Bio-Rad Laboratories, Hercules,
CA); 13 cycles were used for cDNA amplification. Amplified cDNA was purified
using SPRIselect beads (Beckman Coulter, Lane Cove, NSW, Australia) as per the
manufacturer’s recommended parameters. Post-cDNA amplification reaction QC
and quantification was performed on the Agilent 2100 Bioanalyzer using the DNA
High Sensitivity chip. For input into the gene expression library construction, 50 ng
cDNA and 14 cycles was used. To obtain TCR repertoire profile, VDJ enrichment
was carried out as per the Chromium Single Cell V(D)J Enrichment Kit, Human T
cell #1000005 (10× Genomics) using the same input samples. Sequencing libraries
were generated with unique sample indices for each sample and quantified.
Libraries were sequenced on an Illumina HiSeq 4000 using a 150-pair-end
sequencing kit. Gene expression FASTQ files were aligned to the human genome
(GRCh38) using the Cell Ranger v2.2 pipeline, while clonotype sequencing was
aligned to the vdj_GRCh38_alts_ensembl genome build provided by the
manufacturer.

Incorporation of other SCRS data sets. SCRS and TCR sequencing data pro-
cessed using Cell Ranger v2.2 for healthy donor peripheral-blood immune cells
were acquired from the 10× Genomics website on 6/20/2020. Filtered gene matrix
and contig annotations were used in the incorporation of the uniform manifold
approximation and project (UMAP). Total number of cells from healthy
peripheral-blood control were 7726. SCRS of normal immune populations in the
kidney were derived from previously published data30. Gene expression matrices
were downloaded from the EGAS00001002325 and filtered for normal renal par-
enchyma cells using the provided cell manifest for the samples RCC1, RCC2, and
RCC3. These samples were processed using the procedure as described below to
form a UMAP. Immune cells were identified using canonical markers for lineage
and were then isolated. Isolated immune cells for normal renal parenchyma were:
RCC1 (n= 1011), RCC2 (n= 888), and RCC3 (n= 1757).

SCRS integration. Initial processing of cells isolated from ccRCC patients; Patient
1 (n= 10,694), Patient 2 (n= 5174), and Patient 3 (n= 9805) were processed and
integrated with the above samples using the Seurat R package (v3.0.2)53,54. We
removed cells with a percentage of mitochondrial genes >15% and UMI > 5000 to
control for multiplets. Samples were normalized using the SCTtransform
approach55 with default settings. Preparation for integration used 3000 anchor
features and PrepSCTIntegration. The integration of sequencing runs occurred with
the SCT-transformed data. The dimensional reduction to form the UMAP utilized
the top 30 calculated dimensions and a resolution of 0.7. Data characteristics by
sequencing run can be found in Supplementary Data 3. Cell-type subclustering
used the SCTtransform approach as described for the whole-cell integration, but
by integrating the data across samples instead of individual sequencing runs. The
adjusted dimensional inputs for the subclustering analysis can be found in Sup-
plementary Data 4. Parameters for UMAP generation and clustering were looped
from across a range of 5–50 for dimensional inputs and 0.3–1.5 for resolution, final
parameters were selected to generate consistent visualizations. Integration across
the samples for subclustered populations is available in Supplementary Fig. 1.
Doublet density estimation was performed across each cell using the scDblFinder
(v1.4.0) R package using the top 30 PCA dimension and a K of 50. Density scores
of log2(x+ 1) ≥ 3 were designated as doublets in the integrated object and
subcluster-based analyses (Supplementary Fig. 8).

SCRS data analysis and visualizations. The schex R package (v1.1.5) was used to
visualize mRNA expression of lineage-specific or highly differential markers by
converting the UMAP embedding into hexbin quantifications of the proportion of
single cells with the indicated gene expressed. Default bins across all cells was 80
and 40 for subcluster analyses, unless otherwise indicated in the figure legend. This
was done to prevent bias in expression evaluation generated by overlapping dot
plots. Differential gene expression utilized the Wilcoxon rank sum test on count-
level mRNA data. For differential gene expression across clusters or subclusters,
FindAllMarkers function in the Seurat package using the log-fold change threshold
>0.25, minimum group percentage= 10%, and the pseudocount= 0.1. Differential
comparisons between conditions utilized the FindMarkers function in Seurat,
without filtering and a pseudocount= 0.1. Multiple hypothesis correction was
reported using the Bonferroni method. Cell-cycle assignment was performed
in Seurat using the CellCycleScoring function and genes derived from Nestorowa
et al.56. Genes were isolated by calling cc.genes.updated.2019 in Seurat.

Cell-type identification utilized the SingleR (v1.0.1) R package57 with
correlations of the single-cell expression values with transcriptional profiles from
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pure cell populations in the ENCODE31. In addition to correlations, canonical
markers for cell lineages (Supplementary Data 5) and corresponding TCR
sequences were used. Gene set enrichment analysis was performed using the escape
R package (v0.99.0). Gene sets were derived from the Hallmark library of the
Molecular Signature Database and from previous publications22,25. Enrichment for
anti-PD-1 therapy response was derived from Sade-Feldman et al. to develop gene
signatures for the CD8_B (nonresponsive) and CD8_G (responsive) single-cell
populations22. TCR analysis utilized our previously described scRepertoire R
package (v0.99.3)32 with clonotype being defined as the combination of the gene
components of the VDJ and the nucleotide sequence for both TCRA and TCRB
chains and assigned on the integrated Seurat object. Cell trajectory analysis used
the slingshot (v1.6.0) R package36 with default settings for the slingshot function
and using the embedding from the subclustering for each cell type. Ranked
importance of genes were calculated using the top 300 variable genes and rsample
(v0.0.9) and tidymodels (v0.1.0) R packages were used to generate random forest
models based on a training data set of 75% of the cells. The rand_forest function in
the parsnip (v0.1.1) R package was used, with mtry set to 200, trees to 1400, and
minimum number of data points in a node equal to 15 across all cell types. The
processed data and code for all analyses will be made public upon publication at
https://github.com/ncborcherding/ccRCC.

Mass cytometry analysis. Flow cytometry standard files were downloaded for
78 samples utilizing a previously-defined T-cell and tumor-associated macrophage
panel18. Subsequent loading and analyses of the data were based on the accom-
panying published methods18. These files were loaded into R using the flowCore
(v2.0.1) R package. Protein signal was arcsinh transformed using a cofactor of 5,
filtered for previously identified T or myeloid cells. Further data visualization
utilized ggplot2 (v3.3.1).

Machine-learning modeling. The renal clear cell carcinoma (KIRC) log2 gene
expression data were downloaded from the University of California Santa Cruz
Xena Browser and filtered for only primary tumor samples. Updated clinical
information was assigned to the expression data using the tumor barcode58.
Gene signatures from subcluster analysis were generated by comparing gene
expression between clusters and filtering differential gene expression results for
genes with >0.5 log-fold change and 15% difference in cell expression. Training
and testing sample cohorts were divided using the sample function with set.seed
set to 10, splitting the data into a 1:1 ratio. Feature selection was performed using
recursive feature selection using the cross-validation method to optimize feature
selection for 5, 10, 15, and 20 features in the caret (v6.0-86) R package. For each
gene set, several models were trained, including support vector machines, bagged
trees, and k-nearest neighbors. Authors selected the final models based on the
performance of the trained results, k-nearest neighbor models had similar per-
formance to the support vector machines, with the added benefit of classifying
samples based on the nearest point to the training set in the selected feature
space or classifying data points based on similarity. Selected models were then
used to predict survival in the testing cohort and testing parameters were then
calculated. Application of the PANCAN signature analysis was performed as
described above using randomly selected 50% of the KIRC TCGA cohort for
training and applying the KNN model across all samples with both RNA and
overall survival data (n= 11,014) in the PANCAN batch-corrected RNA cohort.
The testing was then separated by cancer type and Cox hazard ratio and logrank
p value were visualized. Survival analyses utilized the survival (3.1–12) and
survMiner (v0.4.7) R packages.

Statistics and reproducibility. Statistical analyses were performed in R (v4.0.1).
Two-sample significance testing utilized Welch’s T test, with significance testing for
more than three samples utilizing one-way analysis of variance. Boxplots display
1.5 times the interquartile range unless otherwise indicated.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Quantified gene expression counts and V(D)J T-cell receptor sequences for single-cell
RNA sequencing are available at the Gene Expression Omnibus at GSE121638. Any other
data relevant to this study are available from the authors upon reasonable request.

Code availability
The processed data and code for all analyses will be made public upon publication at
https://github.com/ncborcherding/ccRCC. This data has also been deposited using
Zenodo59 under https://doi.org/10.5281/zenodo.4311825.
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