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ABSTRACT 

 

The immune system provides a harsh selection pressure for tumors to develop mechanisms to evade 

destruction. Tumors can function to subvert adaptive immune activation by decreasing expression of major 

histocompatibility complex I molecules to prevent the activating signal or through directing the T cell 

differentiation and activity. The latter is a diverse set of methods involving the interaction of cells in the tumor 

microenvironment and can function by increasing infiltration of immunosuppressive regulatory T cells (Tregs), 

myeloid-derived suppressor cells, decreasing antigen presentation, the secretion of suppressive 

cytokines/chemokines, or the overexpression of negative regulators of immune response, so-called immune 

checkpoints. Therapies which elicit an anti-tumor immune response, either by directly stimulating an 

immunogenic response or targeting inhibitory pathways, have long been sought after. My studies focus on 

promoting or directing the immune response by overcoming the tumor-mediated suppression and increasing 

response to immunotherapies. 

 

A major predictive correlate of immune checkpoint blockades is tumor mutational load. Although possessing 

high levels of genomic instability, the aggressive basal-like breast cancer does not respond well to immune 

checkpoint blockade. My work identifies both an increased level and poor prognostic indication of the DNA 

mismatch repair proteins, MSH2 and MSH6, in basal-like breast cancer. Lynch syndrome is a familial disorder 

with germline defects in DNA mismatch repair, a hallmark of these tumors is dense immune infiltration. 

Conversely, we found the increasing level of MSH2 protein in basal-like breast cancer was associated with 

decreased immune signatures, notably in lymphocyte, NK cell, and myeloid cell signatures. The genetic ablation 

of Msh2 in basal-like breast cancer models led to significant reduction in tumor growth and an increase in 

survival time. The addition of the anti-PD-1 immunotherapy led to a further reduction in tumor growth and 

increase in T-cell infiltration in tumors from Msh2 knockout versus Msh2 wild-type cells. This work indicates 

altering the DNA repair process may act as an adjuvant for tumor immunotherapy and increase efficacy of 

immune checkpoint blockade in aggressive breast cancers.  

 

Another critical component of the tumor microenvironment is the suppressive pressure of Tregs. Analysis of 

single-cell RNA sequencing of immune cells from both renal and hepatocellular tumors found heterogeneity 

among Tregs, with tumor-infiltrating Tregs containing distinct, overlapping expression patterns between the 

two cancer types. Further analysis of other datasets identified several genes commonly differentially regulated 

in tumor-infiltrating Tregs compared to peripheral-blood Tregs, one of which was CD177. We confirmed the 

presence of CD177 on of tumor-infiltrating Tregs, but not peripheral-blood Tregs, in humans and found 

increased expression of several suppressive markers and chemokine receptors on CD177+ breast and renal 

cancer-infiltrating Tregs compared to CD177- Tregs. Initial human and mouse studies found that tumor-
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infiltrating CD177+ Tregs were more suppressive than CD177- Tregs in ex vivo suppression assays. Furthermore, 

we found the removal of Cd177 led to decrease tumor growth in both breast and colorectal mouse models. 

Taken together, this work lays a foundation for better targeting of tumor-infiltrating Tregs by identifying novel 

markers of suppressive Treg subsets. 

 

Beyond characterization of immune cell infiltrates of solid tumors, my work also examines the heterogeneity 

within blood malignancies. Cutaneous T cell lymphomas (CTCL), encompassing a spectrum of T-cell 

lymphoproliferative disorders involving the skin, have collectively increased in incidence over the last 40 years. 

Sézary syndrome (SS) is an aggressive form of CTCL characterized by significant presence of malignant cells in 

both the blood and skin. The guarded prognosis for SS reflects a lack of reliably effective therapy, due in part 

to an incomplete understanding of disease pathogenesis. Using single-cell sequencing of RNA, we confirmed 

that SS is a clonal disease by virtue of shared T-cell receptor VDJ expression and CDR3 sequence, but we 

further defined a more complex model featuring distinct transcriptomic states within SS. Furthermore, we 

developed methodologies to utilize the transcriptomic diversities in SS to predict disease stage. This work offers 

insight into the heterogeneity of SS, providing better understanding of the transcriptomic diversities within a 

clonal tumor, which can predict tumor stage and thereby offer guidance of therapy.  

 

Although a diverse set of projects, my studies focus on the axis of immune-tumor interaction and the 

development of computational methods to identify targets to improve immunotherapies. In finding the poor 

prognostic indication of DNA mismatch repair constituents in basal-like breast cancer, my work identifies 

MSH2 and MSH6 as novel tumor promoters in the context of immune evasion. Furthermore, the analysis of 

transcriptional heterogeneity of tumor-infiltrating Tregs is the first demonstration of unique gene expression 

patterns of Tregs in tumors, which can be used to predict survival. Similarly, my work shows the heterogeneity 

of CTCL cells could be a major underlying cause of the development resistance and poor outcomes in the 

treatment of advanced SS.  
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PUBLIC ABSTRACT 

 

If I may borrow terminology from my time in the Marine Corps infantry, cancer is a war on oneself. For the 

last 50 years, oncologists have fought this war with broad, non-specific strategies like chemotherapy and 

radiation that cause collateral damage to the individual patient and lasting repercussions on health. More 

recently, the dawn of targeted therapies is like introducing snipers to the battlefield, increasing the accuracy of 

the therapy against tumors and reducing the side effect profiles of cancer treatments. However, targeted 

therapies generally have a limited effective window of time, as the tumor develop tactics to avoid the therapies, 

what is termed resistance. In the modern era of cancer combat, an emerging strategy is using the immune system 

to fight the tumor. My work focuses on how to arm and direct the immune system against a tumor, limiting the 

collateral damage of chemotherapies and resistance of targeted therapies. In this sense, having the immune 

system fight cancer functions to produce a force that can evolve with the tactics that the cancer might develop, 

leading to more profound, long-term responses. The limitation currently in this strategy is identifying patients 

that may benefit from the immunotherapy and trying to better activate the immune system for patients that 

would not respond initially. 
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CHAPTER 1 
INTRODUCTION 

 

About a year into my graduate studies, I was at a reception to celebrate the completion of the Liaison Committee 

for Medical Education re-accreditation process, a large, bureaucratic process that occurs every seven years for 

medical schools. While having dinner, the conversation turned to discussion of probability. One of the doctors 

stated he was less of a clinician than a Bayesian statistician, dealing with probabilities and patients. Bayesian 

statistics is a subfield of statistics derived from the work of the minister Thomas Bayes who attempted to 

predict the likelihood of winning a lottery based on prior knowledge. In other words, Bayesian statistics deals 

in epistemic confidence, estimating the likelihoods of reality. On this vein of thinking, diagnostic heuristics that 

this doctor uses are based on the evidence the patient presents and the prior knowledge of the likelihood of the 

competing diagnoses. This idea is referred to as Occam’s Razor, which is based on the work of William of 

Ockham, a Franciscan friar, and states among competing hypotheses, the one with the fewest assumptions 

should be selected. A common shorthand for this concept in clinic is, ‘look for horses, not zebras’ to express 

the most likely solution is the probable solution. The use of diagnostic parsimony was expanded throughout 

the works of Sir Arthur Conan Doyle, a doctor himself, who modeled his infamous Sherlock Holmes on one 

of his medical school professors. In the second novel of the series, The Sign of Four, Sherlock explains to his 

friend Dr. James Watson, “when you have eliminated the impossible, whatever remains, however improbable, must 

be the truth?”1 Medicine , research, and Detective Holmes rely on objective realities and assumptions, the latter 

being prone to our cognitive biases.  

 

In the same year as my dinner, Richard Thaler, an economist from the University of Chicago, won the Nobel 

Memorial Prize in Economic Science for his work in the founding of behavioral economics. Thaler, along with 

Amos Tversky and Danny Kahnamen, introduced psychology to economics, characterizing the lack of 

rationality in decision making. In 1972, the iconoclastic Tversky and Kahneman, demonstrated how the ad hoc 

Bayesian Statistician in all of us is inherently faulty. Termed the representativeness heuristic, or how the degree 

of similarity weighs probability estimates for the worse. Through the course of the next 20 years, Thaler, 

Kahneman, and Tversky would demonstrate the irrationality of human decision making. The apostatic financial 

analyst turned philosopher, Nassim Taleb, would later apply a more nihilistic conclusion to human decision 

making in his 2007 book, The Black Swan. In the book, Taleb discusses unexpected events have orders of 

magnitude greater influence than compared highly-reproducible predictions of expected events.2  

 

How does economic theory apply to cancer biology? The simplistic answer focuses on the need for better 

statistical approaches and understanding of limitations as the wave of highthroughput technologies become a 

mainstay in clinical medicine and research. But like many scientific fields, there is much more nuisance. There 
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is a necessary balance that needs to be achieved in using big data analytics. A balance between using large data 

sets as a tool to reveal unique biological understanding and the tendency for overfitting and overinterpretation 

of results. This phenomenon of conclusions based on extrapolation of small numbers or nonrepresentative 

sampling is the basis of erroneous or misleading results that are found in classic phase I or phase II clinical 

trials. The tendency to overfit data is not unique in medical disciplines and is partly responsible for the current 

issues with reproducibility in research. One key to balance the demands of large data analysis is radical 

transparency, making both raw data and code available for other researchers. Additionally, having researchers 

and trainees receive education in data science is a requisite step for the new age of cancer computational biology.  

 

For my part, this dissertation will be a diverse study in how to use computational approaches in cancer research 

with a weighted interest in cancer immunology. Each chapter examines a unique aspect of cancer biology with 

a particular interest in using big data to reveal new insights in both translational and biological phenomena. 

Hopefully, by beginning this dissertation by discussing the faulty statistical inferences that human brains make, 

I hope I have properly framed the reader to expect more pronounced discussion on statistical method and 

limitations of the computational approaches. Fittingly, Amos Tversky and Danny Kahneman first characterized 

the framing effect of human decision making in one of their more famous Science articles in 1981.3  

 

Breast cancer and big data, a case study. 

Cancer is singularly ominous as a term. Not only because the word invokes the feelings of family members and 

friends that have suffered, but because it represents the betrayal of one’s self. Among cancers, breast cancer is 

held in the collective consciousness for a number of reasons. Most prominently to this collective concern for 

breast cancer is the overall prevalence. In the United States, nearly 281,000 new diagnoses of breast cancer will 

be made this year and 43,000 patients will succumb to their disease.4 With the current incidence rates, 1 in 8 

women in the United States will be diagnosed with breast cancer in their lifetime, making it, to borrow Mr. 

Holmes’s words, improbable that breast cancer will not in some way affect you or a loved one.  

  

Breast cancer is a spectrum of diseases that, like other cancers, is named for the tissue of origin rather than the 

underlying clinical and molecular characteristics. In the interest of demonstrating the use of diagnostic 

heuristics, we will start to demarcate the subclassifications of breast cancer using a similar methodology as a 

clinician. These subclassifications are based on histological type and biomarker status or gene expression 

patterns, which are used to identify therapies and predict the course of the disease. The current screening 

guidelines for breast cancer from the United States Preventative Task Force are biennial mammography for 

women ages 50-74.5 While screening before the age of 50, clinicians and patients should take into account 

family history and a patient’s values. A special exception is made for familial cancer syndromes, like 

BRCA1/BRCA2 mutations, or previous history of radiation; these patients should receive annual screenings 
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starting at 30-40 years of age, depending on their mutation.6 Abnormal findings occur in roughly 10% of women 

during the screening mammography.7,8 In these cases, a secondary diagnostic bilateral mammography is 

recommended.6 As a caveat, of these women getting secondary mammography, only 5% will be diagnosed with 

cancer, which translates to a 50% risk of a false positive over the course of 10 years for every woman.7,8  

 

 
Figure 1. Invasive ductal carcinoma tumor initiation and progression. Oncogenic hits lead to a proliferation of mammary ductal cells 
leading to ductal carcinoma in situ. As non-obligate precursors lesions can regress or progress to invasive disease.  
 
After a positive diagnostic mammography, there are several steps in determining the type and sub-classification 

of breast cancer. Mammography, in addition to other imaging modalities, like ultrasound or magnetic resonance 

imaging, can be used to determine if the breast cancer is invasive, a cancer that has spread beyond the layers of 

the tissue of origin, or a carcinoma in situ (CIS), referring to cancer cells that reside within the defined structures 

of the tissue. As the description suggest, CIS is considered a non-obligate precursor lesion to invasive breast 

cancer, with an estimated 20-50% of CIS progressing to invasive disease (Figure 1).9 In the context of nearly 

281,000 diagnosis of invasive breast cancer per year, CIS is diagnosed in over 60,000 women per year in the 

United States.4,10 The next and vital step in the diagnostic framework for breast cancer is the biopsy and 

histopathological examination, which may result from a fine-needle aspiration or from resection of the tumor 

itself.6 Invasive breast cancer and CIS is principally comprised of either ductal (approximately 80% of 

diagnoses), referring to the resemblance of the tumor cells of the mammary duct, or lobular carcinoma 

(approximately 10-15%), referring to the resemblance of the milk-producing structures of the mammary gland.10 

Other rarer types of invasive breast cancer that can be revealed upon histological examination include: 

medullary (2-5%), mucinous (1-6%), tubular (1-4%), inflammatory (1-2%), and papillary (0.5%).11–15 These 

incidence rates form the backbone of the diagnostic heuristic for breast cancer with invasive ductal carcinoma 

(IDC) being the most likely diagnosis, followed by invasive lobular carcinoma (ILC) or ductal carcinoma in situ 

(DCIS). 

 

Ductal Carcinoma In Situ

DCIS
Invasive Ductal Carcinoma

IDC

Tumorigenesis Progression

Mutations result
in uncontrolled proliferation.

Clonal evolution produces tumor cells able to  degrade 
basal membrane, able to become invasive disease. 

Mammary Duct
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Clinically, IDC can be further differentiated by the presence or absence of estrogen receptor (ER), progesterone 

receptor (PR), and human epidermal growth factor receptor 2 (HER2) via immunohistochemical (IHC) 

staining. Due to the high level of copy number amplification of the ERBB2 gene locus for HER2, chromogenic 

or fluorescent in situ hybridization (CISH/FISH) is also often employed. The staining patterns generate three 

principal subtypes, 1) ER+, 2) HER2+, and 3) triple-negative breast cancer (TNBC), lacking ER, PR, and HER2. 

These clinical designations predict the course of disease with TNBC and HER2+ tumors possessing worse 

prognoses with increased risk of recurrence and metastasis compared to ER+ breast cancers.16–19 Additionally, 

the presence of ER and HER directs the use of Food and Drug Administration (FDA)-approved targeted 

therapies, like selective estrogen receptor modulators (SERMs), cyclin-dependent kinase (CDK) inhibitors for 

ER+ tumors, and monoclonal antibodies or small molecule inhibitors that target HER2. Similar to the IHC 

staining, the emergence of highthroughput technologies have begun to change the clinical management of 

patients diagnosed with breast cancer and the understanding of the molecular/genetic underpinnings that drive 

specific cancers.  

 

In a series of papers, Charles Perou and Therese Sørlie demonstrated the importance of gene expression 

patterns in understanding and stratifying breast cancer.20,21 Using microarray quantifications of breast tumor 

transcriptomes, they identified molecular subtypes based on hierarchical clustering. Initial classifications from 

their work included basal-like breast cancer (BLBC), ERBB2+(HER2+), luminal A, luminal B, and normal 

breast-like (Figure 2). Using the clinical subtypes as a foil, these five molecular subtypes essentially represent 

stratifications of the clinical subtypes. TNBC can be thought of as either basal-like (70-80% of the cases) or 

normal-like (20-30% of cases).22 Basal-like refers to the expression of basal-cell-associated cytokeratins 

(KRT5/6/14/17) and epidermal growth factor receptor 1 (EGFR) and account for the poorest prognosis in 

the TNBC patient population.22,23 Likewise, ER+ tumors can be divided into Luminal A or Luminal B, referring 

to their staining of luminal cytokeratins 8 and 18. Luminal A breast cancers are generally ER+PR+HER2- and 

are generally responsive to SERMs or aromatase inhibitors, while Luminal B breast cancers have variable 

expression of ER, PR, and HER2 with a more aggressive disease course.20 Using this molecular subtyping work 

as a basis, a follow-up study utilized a centroid-based machine learning prediction method, named Prediction 

Analysis of Microarray (PAM), to identify 50 genes that could differentiate BLBC, HER2+, Luminal A, and 

Luminal B breast cancers.24 The PAM approach utilizes centroid, or average gene expression in a given class, 

to produce a t-statistic weighted by the mean difference between the groups. Ultimately, PAM identifies stable 

and significantly-differential genes with large differences in mean expression.24,25 These 50 genes that 

differentiate the four major molecular subtypes were later developed into an polymerase-chain reaction-(PCR-

) based assay, called the Prosigna Breast Cancer Prognostic Gene Signature Assay or the PAM50 and received 

FDA clearance in 2013.26  
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Figure 2. Four major molecular subtypes of IDC by gene expression patterns. Invasive ductal carcinoma can be divided into four 
major molecular subtypes by gene expression patterns. These subtypes aid in the application of therapies and the prediction of disease 
course. IHC, immunohistochemistry; Mut, mutations; CNV, copy-number variations.  

Big data is an understatement 

Over the course of the last 50 years, a governing principal in integrated circuitry has been Moore’s Law. In 

1970, the co-founder of Intel, Gordan Moore, predicted the doubling rate of transistors on integrated circuits, 

like computer processors, will double every two years.27 There is no better example of the indefatigable march 

forward of processing speed predicted by Moore than the sequencing the human genome. Although the Human 

Genome Project cost a total of $2.7 billion and took 13 years, the first working draft of the human genome 

sequence took 15 months to produce and cost an estimated $300 million.28 In the 17 years since the completion 

of the Human Genome Project, the cost of sequencing the human genome is approaching $1,000 and takes 

less than a week. Interestingly, this reduction in time to sequence a genome fits Moore’s Law, with the speed 

of sequencing doubling 10.4 times in 17 years. The force multiplier that is big data had been brought to biology 

and spurred on the National Cancer Institute and the National Genome Research Institute announcement of 

the Cancer Genome Atlas (TCGA) project. Over the course of 10 years, the TCGA spent $375 million dollars 

Invasive Ductal Carcinoma (IDC)
70-80% of invasive Breast Cancer

mRNA Isolation

Share of IDC: 40% 
IHC: ER+, PR+
Mut: PIK3CA (49%), GATA3 (14%), 
MAP3K1 (14%), TP53 (12%)
CNV: Cyclin D1 (Amp), PTEN (Loss), 
MDM2 (Gain)

Luminal A

Share of IDC: 20% 
IHC: ER+/-, PR+/-, HER2+/-
Mut: PIK3CA (32%), TP53 (32%), PTEN 
(24%), MAP3K1 (5%)
CNV: Cyclin D1 (Amp), CDK4 (Gain), 
MDM2 (Gain)

Luminal B

HER2
Share of IDC: 20-25% 
IHC: ER-, PR-, HER2+
Mut:TP53 (75%), PIK3CA (42%), PTEN 
(19%), PIK3R1 (8%)
CNV: ErbB2 (Amp), Cyclin D1 (Amp), 
CDK4 (Gain), MDM2 (Gain)

Share of IDC: 15-20% 
IHC: ER-, PR-, HER2-
Mut:TP53 (84%), PTEN (35%), RB1 
(20%)
CNV: Cyclin D1 (Amp), MYC (Gain), 
CDE1 (Amp), MDM2 (Gain)

Basal-Like

Processing…

Molecular Subtypes
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multimodally quantifying over 10,000 tumor samples, generating 20 petabytes of data (one petabyte equals 1024 

terabytes).29  

 

The largest dataset from the TCGA, breast cancer includes quantification of 1,098 primary breast tumors, 113 

paired normal breast samples, and six metastases.31 These samples were assayed for DNA mutations (whole-

exome and whole-genome sequencing), copy number variations, RNA expression (RNA sequencing and 

microarray), DNA methylation, and protein using the reverse-phase protein array (RPPA). The resulting data 

provided researchers with a “comprehensive molecular portrait” of breast cancer or rather a previously 

unknown resolution in the investigation the molecular underpinnings of breast cancer.30 This portrait paints a 

picture of breast cancer as highly variable between patients but supports previous literature on categorizations. 

Luminal A and B breast cancers contain greater than 80% ER+/PR+ samples, high levels of phosphoinositol-

3-kinase (PI3K) pathway activation, and CCND1 amplification. Luminal B tumors contain 15% HER2+ 

samples, higher proliferation index compared to Luminal A, and a hypermethylated phenotype.30 Basal-like 

tumors have high rates of TP53 mutations and/or gain in MDM2, a negative regulator of p53, resulting in over 

95% of samples lacking intact p53 regulation. In addition, BLBC had high rates of RB1 mutation, highly 

genomically unstable, and hypomethylated.30 In contrast, HER2+ tumors had high rates of TP53, CCND1, and 

PI3KCA mutations, in addition to the characteristic amplification of the ERRB2 gene locus.30 In addition to 

these four major molecular subtypes, additional subtyping strategies have been suggested to include claudin-

low, a variant of BLBC with more pronounced stem-like and epithelial-to-mesenchymal (EMT) 

characteristics.31 While other groups have identified other TNBC/BLBC subtypes on the basis of predicted 

drug response by gene expression patterning.32  

 

Preclinical and clinical trials for targeted therapies in BLBC have focused on several targets identified by these 

large datasets. However, many of the targeted approaches have failed due to capacity of BLBC to develop 

resistance. Investigations into growth factor signaling antagonists, like EGFR pathway or vascular endothelial 

growth factor receptor (VEGF) signaling demonstrated no clear improvement in survival for patients.33–35 

These trials suggest a capacity for innate and adaptive resistance mechanisms to targeted therapies in BLBC.35 

More recently, Poly-ADP-ribose polymerase (PARP) inhibitors have shown promise in BLBC patients with 

germline mutations in BRCA1/2, leading to a recent FDA approval.36 PARP inhibitors work by interrupting 

single-strand DNA repair. In the context of tumors with BRCA1 mutations, cells are unable to repair single- 

or double-strand DNA breaks leading to apoptosis, a process also referred to as synthetic lethality.37 Despite 

the promise of PARP inhibitors, BRCA1/2 germline mutations account for 2-5% of total breast cancer 

incidence and 15-20% of TNBC.30,38 Trials using PARP inhibitors in TNBC without regard to BRCA status 

had near zero overall response rates.39 The ability of data to identify potential targeted therapies have directed 

a precision-medicine initiative by the National Cancer Institute (NCI) to match therapies with underlying 
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molecular/genetic profiling regardless of the site of origin of the tumors, known as the NCI-MATCH trial. 

This is a modern molecular take on the Bayesian approaches of diagnosing and treating cancer.  

 

Much like Moore’s law and the prediction of current processor speed, the quantifications made by the TCGA 

is quickly becoming out of date. Emerging from the wake of the TCGA data is the advent of single-cell RNA 

sequencing and DNA methylation technologies that are able to quantify not only the heterogeneity of cancer 

cells within a single tumor, but also the interface of cancer cells and stromal cells.40–42 Previous hypotheses that 

govern cancer biology, like EMT, a genetic reprogramming incurred as a cancer cell become capable of 

metastasis, can be investigated on the single-cell level. In one of the first single-cell RNA sequencing projects 

examining breast cancer, researchers found intratumoral heterogeneity, which was highly subtype dependent. 
43 This subtypic difference was also seen in the infiltration of immune cells, with Luminal and HER2+ immune 

infiltrate principally comprised of B and T cells, while BLBC tumor infiltrates were composed of macrophages 

and T cells.43 This intertumoral difference based on breast cancer molecular subtypes in immune infiltrates is 

intriguing as a therapeutic target and is the basis of the later chapters of this dissertation.  

 

Anti-tumor immunity and immunotherapy 

If cancer is the betrayal of one’s body, immunotherapies function by returning control to the body. The 

importance of anti-tumor immunity and the promise of immunostimulants against cancer is not a new concept. 

One of the original pioneers in this field was the bone sarcoma surgeon William Coley. Working in the 1890s 

at New York Cancer Hospital, later known as Memorial Sloan Kettering Cancer Center, Dr. Coley noticed his 

patients that suffered from post-operative infections after tumor resections had markedly better survival. This 

observation led Dr. Coley to inject bacterial cocktails in hopes of stimulating his patients’ anti-tumor 

immunity.44 This risk of injecting live bacteria into cancer patients, who are already immunosuppressed, led Dr. 

Coley to further pursue attenuated mixtures of bacterial product and over the course of his career he estimated 

to have used his therapy on over 1,000 patients. Despite the promise of this work, many of Dr. Coley’s peers 

were highly skeptical and the cancer immunology field went into dormancy with the advent of radiation and 

chemotherapies.45 Fast forward to 2013 and cancer immunotherapies were named the Science Breakthrough of 

the Year from the American Association for the Advancement of Science and the 2018 Nobel Prize in 

Physiology or Medicine was awarded to James P. Allison and Tasuka Honjo for the unleashing the anti-tumor 

potential of T cells through immune checkpoint blockade.46,47  

 

In the original seminal review of cancer, the Hallmarks of Cancer, Douglas Hanahan and Robert Weinberg did 

not identify the tendency of cancer to avoid immune destruction, a lapse that was corrected in the follow-on 

2011 version of the review.48,49 In the same year, 2011, the physician scientist Ralph Steinman succumbed to 

his pancreatic cancer, three days before he was awarded the Nobel Prize in Physiology or Medicine for his 



8 
 

identification of dendritic cells, the first posthumous award in the history of Nobel Prizes.50 Dr. Steinman’s 

final project was the development of a dendritic-cell-based cancer vaccine to activate his own immune system 

against his pancreatic cancer. In the interim 100 years between Coley’s cocktail to re-emergence of cancer 

immunotherapy, what changed to make cancer immunology a viable therapeutic option? As Dr. Steinman 

approach illustrates, the field found the ability to give patients’ immune systems a direction against cancer by 

using T cells. As I complete this dissertation, the announcement of the 2018 Nobel Prize for immune 

checkpoint blockade (ICB) serves as a poetic bookend for the identification of T cells as important and specific 

targets for cancer immunotherapy. 

 

 
Figure 3. T-cell activation and the role of immune checkpoints. A. General scheme of T-cell activation Signal 1 is provided by the 
TCR binding to the antigen presented on MHC. Signal 2 is the costimulation of the T cell by the interaction of CD28 on the T cell 
with CD80 or CD86. Cytokines act as a Signal 3 that directs the T-cell differentiation. B. Mechanistic summary of TCR activation and 
points of CTLA-4-mediated (red) and PD-1-mediated (blue) inhibition. 
 

T-cell activation and response 

T-cell activation is a multilayered process involving cell-to-cell communication between antigen-presenting cells 

(APC) and T lymphocytes (Figure 3A). This model of T-cell activation is referred to as the two-signal model 

with a tertiary signal directing the type of immune activation. The initial signal comes from interactions between 

the T-cell receptor (TCR) on naïve CD4+ or CD8+ T cells and processed antigenic peptides via the major 

histocompatibility complex (MHC) on APCs.51 Subsequently, the intracellular domains of the TCR are 

phosphorylated by Lck, leading to the recruitment and activation of Zap70, the major relay of TCR 

activation.52,53 A network of anti-apoptotic and proliferative signals downstream of Zap70 provide the primary 

signal for activation of T cells.54–56 The second signal, or co-stimulatory signal, comes via interaction between 

co-stimulatory receptors on T cells with their ligands on APCs. The most prominent co-stimulatory signal is 

the interaction of CD28 on the T cell with CD80 (B7-1) or CD86 (B7-2). This interaction leads to increased 

PI3K-mediated proliferative signaling and cytokine production.57,58 A tertiary level of signaling is provided by 
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cytokines, directing lineage-specific expression of transcription factors and shaping the type of immune 

response.59 The activation of T cells is balanced by co-inhibitory receptors on T cells, often upregulated upon 

TCR activation, which counterbalances co-stimulatory signals.60 These co-inhibitory signals are referred to as 

immune checkpoints. Together, the signals from MHC-TCR, CD28-CD80/86, and cytokines determine the 

magnitude and effectiveness of T-cell responses to infection or cancer. 

 

Immune evasion is recognized as one of the hallmarks of cancer,49 and therapies which elicit an anti-tumor 

immune response, either by directly stimulating an immunogenic response or targeting inhibitory pathways, 

have long been sought after. Tumors can function to subvert adaptive immune activation by decreasing 

expression of MHC-I molecules to prevent the activating signal or through directing the T cell differentiation 

or activity.61–64 The latter is a diverse method involving the interaction of cells in the tumor microenvironment 

and can function by increasing infiltration of immunosuppressive regulatory T cells (Tregs), myeloid-derived 

suppressor cells (MDSCs), decreasing antigen presentation, increasing the secretion of suppressive cytokines, 

or the overexpression of inhibitory ligands for ICB, like programmed death-ligand 1 (PD-L1).63–65  

 

Immune checkpoints: check yourself before you wreck yourself 

CTLA-4 is a member of the CD28 family and is expressed exclusively by T lymphocytes. Upon T-cell activation, 

CTLA-4 within intracellular granules is translocated to the plasma membrane.66 This fast translocation allows 

for CTLA-4-mediated regulation of the amplitude of T-cell response by dampening T-cell activation and 

priming. CTLA-4 binds to CD80 or CD86 costimulatory molecules, acting as a competitive antagonist with 

CD28.67 In addition, CTLA-4 works through protein tyrosine phosphatase 11 and 6 (also known as SHP-1/2) 

to dampen TCR signal.67 CTLA-4 plays a role in one arm of peripheral tolerance, an immunological process to 

prevent self-reactive immune responses, by dampening T effector cell function and increasing 

immunosuppressive Treg activity.68 Unlike effector cells, Tregs express CTLA-4 constitutively and CTLA-4 

acts as a major mechanism of suppression by Tregs.69 CTLA-4 on Tregs competes with CD28 on effector T 

cells for binding with CD80/86 on APCs, thus suppressing T-cell activation. The higher level of CTLA-4 on 

Tregs also serves to preferentially deplete Tregs in tumors treated with anti-CTLA4 therapies.70 Increasing the 

binding affinity the Fc portion of the antibody enhanced the depletion of Tregs and increased response in 

tumors.71 Due to the earlier inhibition mediated by CTLA-4, the blockade of CTLA-4 leads to non-specific 

immune cell activation and is associated with increased treatment-related adverse events.72 This nonspecific 

immune activation is underscored by the early death of Ctla4-null mice due to widespread lymphoproliferative 

disease within the peripheral T cell compartment.73,74 In humans, disrupted expression and localization of 

CTLA-4 has been linked with type 1 diabetes, rheumatoid arthritis, systemic lupus erythematosus, and collagen-

induced arthritis.75,76  
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PD-1, another member of the CD28 family, acts as a negative regulator of immune response preferentially in 

peripheral tissues through the interaction with PD-L1 or PD-L2. Part of a negative feedback loop after immune 

activation, PD-1 and PD-L1/2 play a role in the maintenance of peripheral tolerance and the letdown following 

immune activation or chronic infections. As a part of peripheral immune suppression, PD-1 is expressed on 

lymphocytes, monocytes, NK cells, and dendritic cells.77 Importantly, PD-1 is absent on resting or naïve T cells 

and is transiently upregulated during the activation process. This upregulation is analogous to the development 

of T cells in the thymus, with increased PD-1 required for positive and negative selection of immature T cells 

following TCR activation.78 Upon activation T cells upregulate the transcription of PDCD1, the gene locus for 

PD-1. The transcriptional regulation of PD-1 is different from CTLA-4, which localizes to the plasma 

membrane quickly after TCR signaling.66 PD-L1 is broadly expressed, and the protein is easily to be induced 

by many cytokines, particularly type 1 and type 2 interferons.79–82  In contrast to PD-L1, the second ligand, PD-

L2, is exclusively expressed on APCs.81,83,84  

 

PD-1 suppression acts downstream of TCR activation through the stimulation of protein tyrosine phosphatases 

SHP1/2. In turn, SHP1/2 dephosphorylates ZAP70 and PI3K, the major targets of the costimulatory CD28 

(Figure 3B).85,86 Additionally, there are reports that suggest PD-L1 and transforming-growth factor β (TGFβ) 

can convert naïve CD4+ T cells into induced Tregs, which potentially provides a long-term immune suppression 

by PD-1/PD-L1 pathway.87,88 The loss of PD-1 suppression is associated with antibody-mediated 

autoimmunity, like glomerulonephritis, dilated cardiomyopathy, and lupus-like autoimmunity.89–91 

Underscoring the importance of PD-1 in peripheral tolerance, single-nucleotide polymorphisms in PD-1 have 

also been associated with a wide range of autoimmune conditions, including systemic lupus erythematosus, type 

I diabetes, multiple scleroses, rheumatism, Grave’s Disease, and ankylosing spondylitis.92 This link to antibody-

related autoimmunity is likely a direct result of PD-1-mediated suppression of B cell activation.92  

 

Sustained expression of PD-1 on T cells is a marker for T-cell exhaustion.93 Exhausted T cells arise from 

activated effector T cells that gradually become silenced due to persistent exposure to antigen.94 Exhausted T 

cells become progressively dysfunctional due to increased expression of several inhibitory receptors, including 

PD-1 and CTLA-4, a gradual loss of effector cytokine secretion, and altered cellular metabolism.94,95 T-cell 

exhaustion, which is thought to have evolved as a mechanism to promote peripheral tolerance and prevent 

autoimmunity, is often co-opted by viruses during chronic infection and cancers as a mechanism of immune 

evasion.96,97 Effector T cells in the tumor microenvironment become exhausted due to constant exposure to 

tumor antigens and upregulation of PD-L1 on cancer cells and myeloid cells by oncogenic signaling and 

inflammatory cytokines.97–99 It is thought that anti-PD-1 and PD-L1 therapies work in part by reversing or 

preventing T-cell exhaustion.  
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Outside of PD-1 and CTLA-4, there are a number of immune stimulatory and suppressive molecules currently 

under investigation for therapeutic targeting as cancer immunotherapy.72 Similar to PD-1/PD-L1 and CTLA-

4, other inhibitory checkpoints, like LAG-3, TIM-3, BTLA, VISTA, or TIGIT can dampen the anti-tumor 

immune response by regulating T-cell activity.100,101 Like PD-1, the negative immune checkpoints, TIM-3, LAG-

3, and BTLA are expressed on T cells subsequently to T-cell activation and have been implicated as markers of 

T-cell exhaustion in tumors.101–105 TIM-3 also appears to shift the immune responses by negatively regulating 

Th1 CD4+ T cells and cytotoxic CD8+ T cells, responsible for anti-tumor immune responses.106 In contrast, 

VISTA is expressed by both APCs and T cells, with high expression on the suppressive MDSCs and Tregs, 

functioning in both myeloid cell activation and Treg function.107 TIGIT is expressed by Tregs, T cells, and NK 

cells and bind poliovirus receptor on tumor cells or APCs. TIGIT appears to have direct and indirect 

suppressive effects, by acting as a competitive antagonist to CD226 binding by NK and T cells, but also leading 

to the recruitment of SHP1/2 and downstream inhibition of AKT signaling in T cells.108–111 Furthermore, 

binding of poliovirus receptor to TIGIT on APCs and Tregs increases suppressive activity and release of 

inhibitory cytokines.109,112 

 

In contrast, immunostimulatory checkpoints, like ICOS, OX-40, or CD40L, assist in the activation and 

maintenance of effector T cells. As a member of the CD28 family, ICOS binds B7H/B7RP-1 and can function 

in providing the second signal in immune activation.113 Likewise, OX-40 can act as a costimulatory signal, but 

the expression is induced upon T-cell activation and leads to the expression of anti-apoptotic factors BCL-2 

and BCL-XL, which sustain the proliferative response in T cells.114,115 OX-40 is also constitutively expressed 

on Tregs and binding of the receptor to OX40L decreases Treg function.116 The interaction of CD40 (on 

APCs) and CD40L on activated T cells promotes a proinflammatory immune responses via the induction 

of NF-kB signaling.117 Unlike the inhibitory checkpoints where antibodies are used to physically obstruct 

interaction by the respective ligand, stimulatory checkpoints can be targeted by ligand-expressing viral 

particles, recombinant ligand peptides, or agonistic monoclonal antibodies. As these emerging immune 

checkpoints are further developed, the wide range of mechanisms and targeting strategies will broaden efficacy 

of immunotherapies for patients by allowing physicians to better select therapies for individual tumors. 

 

Immune checkpoint inhibitors: results of monotherapy trials 

CTLA-4 and PD-1/PD-L1 are the two most widely studied immune checkpoint pathways with monoclonal 

antibodies that target these two pathways having been approved by FDA for cancer therapy. The success of 

these agents has spurred on development of other antibody-based or immunostimulatory drugs to be used as 

monotherapies or in combinatorial regimes. To date, there has been no comprehensive summary of single-

agent ICB therapies. Analysis of these results and factors identified by these trials is the first step in 

understanding the patterns of response and resistance in patients receiving ICB. We performed a 
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comprehensive summary of results for trials with at least one arm comparing monotherapy of anti-PD-1 

(pembrolizumab, nivolumab), anti-CTLA-4 (ipilimumab), or anti-PD-L1 (atezolizumab). These four antibodies 

were selected based on trial results in multiple cancer types and accounted for 8,069 patients across 43 clinical 

trials (Table 1). Inclusion criteria for summarized trials are the enrollment of clinical trial into ClinicalTrials.gov  

database and the measurement of objective response using clinical or radiographic data.  
 

Table 1. Comprehensive Summary of clinical trials using single-agent immune checkpoint 

TRAE 3+, Grade 3 or Above Treatment-Related Adverse Event; AE 3+, Total Grade 3 or Above Adverse Event; NSCLC, Non-small 
cell lung carcinoma; RCC, Renal cell carcinoma; UC, Urothelial carcinoma; HL, Hodgkin’s lymphoma; HCC, Hepatocellular carcinoma; 
PMBCL, Primary mediastinal B-cell Lymphoma; HNSC, Head and neck squamous cell carcinoma; CLL, Chronic lymphocytic leukemia; 
TCA, Thyroid carcinoma. *Utilized different response criteria between studies 
 

Cancer Type Agent Target Total Objective 
Response TRAE 3+ Total 3+ 

AE Citations 

Melanoma 

Pembrolizumab PD-1 1179 24.1-33.4% 5.9-14% 19-34% 118–120 
Nivolumab PD-1 620 27.6-43.7% 11.7-16% 34-43.5% 121–123 
Ipilimumab CTLA-4 723 9.8-19.05% 19.6-27% 33.2-55.6% 118,121,124–

127 

NSCLC 

Pembrolizumab PD-1 977 18.9-44.8% 9.49-26.6% Not 
Reported 

128–131 

Nivolumab PD-1 747 12.8-26.1% 10-18% 30.7-46% 123,132–134 
Atezolizumab PD-L1 566 13.6-17% 12-14.8% 44.4-45% 135,136 

UC 

Atezolizumab PD-L1 675 13.4-26.3% 7-16% 12.6-54.4% 137–139 
Pembrolizumab PD-1 266 21.1% 15% 52% 140 
Nivolumab PD-1 256 19.6% 18 Not 

reported 
141 

RCC Nivolumab PD-1 607 20.8-27.27% 11.3-18.7% Not 
Reported 

123,142,143 

HL Pembrolizumab PD-1 241 65-69%* 6.7-100% 21.4% 144,145 
Nivolumab PD-1 103 66-87%* 31.3-43.5% 76.3-100% 146,147 

Gastric 
Carcinoma 

Nivolumab PD-1 268 11.2% 10% 41.5% 148 

HNSC Pembrolizumab PD-1 236 13.3% 13.1% 39.4% 149 
HCC Nivolumab PD-1 214 19.6% 25% 60.4% 150 

Sarcoma 
Pembrolizumab PD-1 80 5-18% 7.1-11.9% 54.8-59.5% 151 
Nivolumab PD-1 38 5.3% 28.6% Not 

Reported 
152 

MSI-H Tumors Pembrolizumab PD-1 81 25-80% 20.24% Not 
Reported 

153 

TCA Pembrolizumab PD-1 40 22.5% Not 
Reported 

77.5% 154 

Anal Carcinoma Nivolumab PD-1 35 24% 16% Not 
Reported 

155 

Breast Pembrolizumab PD-1 27 18.5 15.6 Not 
Reported 

156 

Merkel Cell 
Carcinoma 

Pembrolizumab PD-1 26 56% 15% 42.3% 157 

CLL Pembrolizumab PD-1 25 12% 60% Not 
Reported 

158 

Hematological 
Malignancies 

Ipilimumab CTLA-4 22 31.8%* Not 
Reported 

86.4% 159 

PMBCL Pembrolizumab PD-1 17 41% 11% Not 
Reported 

160 
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Based on the results of these trials, major predictors of response to ICB are the therapeutic targets and the 

tumor types. In general, agents targeting PD-1 have higher rates of response with lower toxicity, compared to 

anti-CTLA-4 antibody, ipilimumab. Evaluation of both the treatment efficacy and treatment-related adverse 

events (TRAE) of anti-CTLA-4 versus anti-PD-1 is limited by the broader use of ipilimumab in combination 

with other agents that are not included in this summary. Restricting analysis to the 10 single-agent trials in 

melanoma, objective responses were 9.8-19.1% for ipilimumab compared to 24.1-43.7% for patients on anti-

PD-1 therapies.118,120,121,161–163 Previous work has reported increased TRAEs with anti-CTLA-4 compared to 

anti-PD-1 therapy, which is seen in comparing 10 trials of melanoma with grade 3 or above TRAE for 

ipilimumab ranging from 19.6-27% compared to 5.9-16% for anti-PD-1 therapies.72 Several complications exist 

comparing multiple trial results across single tumor types. For example, the high variability in objective 

responses to pembrolizumab (18.9-44.8%) and nivolumab (12.8-26.1%) in non-small cell lung carcinoma 

(NSCLC) is likely partially a result of different inclusion criteria for patients based on PD-L1 

immunohistochemical staining discussed later.128,130,131,133,134,163–165 Similarly, most of the trials use the criterion 

for objective response based on the reduction in tumor size greater than 30% as defined by the RECIST 

criteria.166 Notably each of the single-agent clinical trials in Hodgkin’s Lymphoma utilized different criteria to 

measure objective response.145,146,167,168 Likewise, the definition of TRAE varies widely by tumor type with 

researchers reporting all TRAEs or only TRAEs that affect a certain percentage of the ICB-treated patients. 

 

Tumor type is a predictive correlate of response with higher responses for both anti-PD-1 and anti-CTLA-4 

agents in immunogenic tumors and lymphomas. Of note, in advanced, refractory Hodgkin’s Lymphoma 

responses ranged between 65-87% across both pembrolizumab and nivolumab.145,146,167,168 High response rates 

were also seen by tumors with high microsatellite instability (MSI-H, 25-80%, pembrolizumab)169, Merkel cell 

carcinoma (56%, pembrolizumab)170, and primary mediastinal B-cell lymphoma (PMBCL, 41%, 

pembrolizumab).160 Although beyond the scope of the inclusion criteria for the table, early phase trials included 

other solid tumors that did not demonstrate response to ICB, notably pancreatic cancer171, castration-resistant 

prostate cancer163, colorectal cancer163, gastric cancer172, and breast cancer.172 

 

Predictors of resistance and response for ICB therapy 

The diverse clinical response of patients across multiple tumor types to ICB highlights the need to understand 

mechanisms that drive response and resistance. A variety of factors that influence immune response are directly 

or indirectly influenced by the tumor, providing permissive conditions for tumor growth and progression. For 

example, chronic inflammation can drive tumor growth by providing growth factors and preventing innate or 

adaptive anti-tumor immune responses.173,174 In turn, the tumor can produce chemotactic agents and other 

factors that maintain the inflammation in a positive feedback loop.173,174 The inflammation in cancer is 

influenced by systemic factors, like age, adiposity, genetics, or the gut microbiome. Like the factors that impact 
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chronic inflammation and cancer, predictors of response to ICB can be divided into three categories by location: 

tumor cell intrinsic, tumor microenvironment, and systemic factors. Despite the tidy organization, many of the 

predictors of response interact at multiple levels and ultimately translate to modulating total infiltration and 

function of immune cells in the tumor before or after ICB therapy.  

 

Tumor-intrinsic factors that predict response to ICB 

Whole-exome sequencing has revealed the mutational load of tumors as a major predictor of ICB 

response.153,165,175–177 Underlying these observations is the hypothesis that somatic mutations lead to tumor-

specific neoantigens that can overcome self-tolerance (Figure 4A). However, high mutational load is not 

necessary for ICB response as in the case of clear cell renal cell carcinoma (ccRCC) with greater than 20% 

objective response rates and a relatively low mutational load of 1 mutation/megabase, compared to the 10 to 

400 mutations/megabase in melanoma or NSCLC.163,178–180 Mutator phenotypes, like those with familial Lynch 

Syndrome or other mismatch repair deficient (dMMR) tumors, have objective response rates ranging from 25-

80% for anti-PD-1 therapies.153,169 These high response rates led to the accelerated approval in May of 2017 of 

pembrolizumab for unresectable or metastatic dMMR or microsatelliteinstability-high (MSI-H) cancers 

regardless of their tissues of origin, a first such approval from the FDA that is based on molecular trait rather 

than cancer type. In NSCLC, increased C-to-A nucleotide transversions and decreased C-to-T transversions 

were found to be indicative of smoking status and may serve as a marker of response to ICB.165 Like Lynch 

Syndrome with mutations in DNA repair genes, most commonly MLH1 and MSH2, mutations in BRCA2, 

POLD1, and POLE have also been identified in association with response to anti-PD-1 therapies.165,181 BRCA2 

is an adaptor for homologous recombination, while POLD1 and POLE code for subunits of DNA polymerases 

that synthesize and repair DNA. Mutations in these three genes may also increase total mutational load in 

tumors. In a similar vein, a current open-label phase II clinical trial involving breast cancer patients with 

BRCA1/2 germline mutations (NCT0302503) is being conducted and will assess if mutator phenotypes are a 

predictor of response outside of immunogenic tumors. Preclinical transgenic murine models of BRCA1-

deficient breast tumors demonstrated combinatorial therapy of anti-CTLA-4 and anti-PD-1 with the DNA 

crosslinking agent, cisplatin, enhanced survival.182 Unlike mutations, chromosomal copy number alterations 

and aneuploidy has been reported to be inversely associated with response to ICB due to the possible loss of 

immune mediators.183,184 

 

In the context of tumor-specific mutations, both quantity and quality play a role. Evaluating neoantigens on 

the basis of likelihood of presentation and T cell recognition, termed neoantigen fitness, has been found to 

predict increased immunotherapy response.185 Parsing neoantigen fitness is a basis for investigations into 

personalized neoantigen-based vaccines.185–189 In combination with anti-PD-1 therapies, personalized-vaccine 

priming appears to work synergistically in promoting anti-tumor immune response.186,189 Anti-PD-1 therapy 
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has been reported to contract the mutational load and cancer cell clonality in complete and partial responders; 

whereas nonresponders tend to have persistent mutational load and cancer cell clonality.190 Beyond DNA 

repair-related genes, mutations in SERPINB3 and SERPINB4 mutations, a class of peptidase inhibitors, have 

been reported in responders to anti-CTLA-4 and anti-PD-1.190,191 Recent data from anti-PD-1 therapy in ccRCC 

found loss-of-function mutations in PBRM1, a chromatin remodeling subunit, to be associated with response 

and better overall survival.180 Conversely, mutations in JAK1 and JAK2 kinases, major relays in interferon γ 

(IFN-γ) signaling in melanoma and epidermal growth factor receptor (EGFR) in NSCLC have been identified 

in progressors on ICB therapy.192,193  

 
Figure 4. Factors that influence response of tumors to immune checkpoint blockade. A. Tumor intrinsic markers of response to 
therapy, focusing on increased mutation and expression of PD-L1by tumor cells. B. Tumor microenvironmental factors that influence 
response. Increased activated T cells lead to IFNγ that drives PD-L1 expression on other cells. Increased Tregs can suppress anti-
tumor immune response. 
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In the context of anti-PD-1 therapies, PD-L1 immunohistochemical staining and gene expression in tumor 

cells have been proposed to predict response to PD-1 therapy in melanoma, NSCLC, ccRCC, and Hodgkin’s 

lymphoma (Figure 4A).134,146,194–200 This corresponds to the proposed mechanisms of anti-PD-1 therapies, in 

which cancers with high levels of PD-L1 expression are suppressing anti-tumor immunity and the blockade 

overcomes the PD-1/PD-L1-mediated immune suppression. The use of PD-L1 staining in NSCLC using a 

cut-off of 5-10% positive cells has mixed benefit.132,134,201,202 Using a higher cut-off of 50% PD-L1-positive cells 

in the Keynote-001 study of pembrolizumab in NSCLC, PD-L1+ patients had an objective response rate of 

45%, compared to 19.4% across all patients.130 This predictive finding led to FDA approval of PD-L1 

immunohistology as a companion diagnostic for pembrolizumab in 2015. Within melanoma, the staining for 

PD-L1 in greater than 5% of cells is more consistently associated with increased objective responses to anti-

PD-1 therapy based on a meta-analysis of 11 melanoma trials.202 Interestingly, PD-L1 expression is not 

necessarily associated with regional or total lymphocytic infiltration.200 These collective disparities may be a 

result of a greater association of immune infiltration with tumors containing PD-L1+ immune cells compared 

to PD-L1+ tumor cells alone.203  

 

Immune cells may drive PD-L1 expression on tumor cells through interferon signaling.79–82 In melanoma, IFN-

γ-mediated PD-L1 expression requires downstream activation of JAK/STAT, highlighting the role of 

previously mentioned mutations in JAK1/ JAK2 in resistance to anti-PD-1 therapies.81,192 Immunogenic 

etiologies of increased PD-L1 expression has been reported in Merkel cell carcinoma with infection by Merkel 

cell polyomavirus or induced by the combinatorial ICB and oncolytic virus therapy.170,204 Despite an association 

of Hodgkin’s Lymphoma with the Epstein-Barr virus, no association between infected patients versus uninfected 

patients and PD-L1 expression has been reported.146 Regardless of infection status, the Reed-Sternberg tumor 

cells of Hodgkin’s Lymphoma contain copy number gain or amplification of PD-L1 and PD-L2 genetic loci, 

CD274 and PDCD1LG.146 This may contribute to the up to 87% objective response rates reported in Hodgkin’s 

Lymphoma.146 Interestingly, elevated PD-L1 expression on melanoma cells has been associated with poor 

response to combinatorial anti-CTLA-4 and radiation therapy, supporting the complementary, yet distinct roles 

of CTLA-4 and PD-1 in immune regulation.205  

 

Microenvironmental factors that predict response to ICB 

A product of the immune-tumor microenvironment, immune response gene expression patterns have been 

linked to improved responses in both anti-PD-1 and anti-CTLA-4 therapies (Figure 4B). Common among 

both of these therapies is activated CD8+ T cell signature and IFN-γ signaling. Principally, increased response 

has been associated with elevated expression of CD8A, IFNG, PRF1, GZMA, and GZMB.192,195,199,206,207 The 

interface of tumor cells and immune cells plays a role in the activation of immune cells with mutations or copy 

number loses in both type 1 and type 2 interferons signaling modules associated with decrease response or 
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resistance to ICB.192,207 Interestingly, immunosuppressive pathways, like IL-10, have had mixed observations, 

with IL10 expression reported lower in responders before the induction of pembrolizumab.181 Conversely, IL-

10 is increased in PD-L1+ melanomas195 and copy number loss in the α subunit of the IL-10 receptor is has 

been seen in anti-CTLA-4 nonresponders.207  

 

Gene expression signatures are indirect measures of immune cell infiltration and activation in the tumor 

microenvironment. A major focus of prognostic forecasting for ICB response has been increased T cell 

presence at the invasive margin or intratumorally.184,198,208 More specifically, increase in activated CD8+ T cells 

and decrease in immunosuppressive Tregs have been reported in responders to ICB (Figure 4B).166,178 A 

hallmark of Lynch Syndrome-associated hereditary nonpolyposis colorectal cancer and MSI-H sporadic 

colorectal cancer is lymphocytic infiltration, which may partially account for the increased response rates to 

ICB in these tumors.209,210 Additionally, MSI-H tumors have been associated with increased cytotoxic CD8+ T 

lymphocytes and increased IFN-γ-secreting Th1 CD4+ cells compared to microsatellite-stable tumors.211 Work 

from Roh, et al. suggests that not only quantity of lymphocytic infiltration predicts better response, but also 

expanded TCR clonal populations before the induction of anti-PD-1 therapy are predictive.184 Similarly, after 

the induction of anti-PD-1 therapy, clonal expansion of T lymphocytes was seen exclusively in patients with 

objective responses.190 The clonal expansion of T cells, however, does not seem to be associated with the 

response to anti-CTLA-4.184  

 

These works have led to attempts using combinatorial approaches to stimulate or prime the tumor 

microenvironment to increase T cell infiltration and activity. Notably investigations into using ICB in 

combination with vaccines,212 anti-angiogenic molecules,213 oncolytic viruses,204 radiation,205,214,215 suppressors 

of TGFβ,216 and DNA-methylation inhibitor have been reported.217 The use of combinatorial radiation and 

ICB seems to function at multiple levels, by increasing lymphocytic infiltration, removing suppressive cells, and 

priming the microenvironment while also increasing mutational load.205,214,215 Dysregulation following CD8+ T 

cell infiltration may contribute to resistances to ICB therapies by increasing PD-L1 expression by tumor cells, 

increasing Treg infiltration, and upregulating the suppressive indoleamine-2,3-dioxygenase (IDO) metabolite 

within the tumor microenvironment.81,218 IDO itself may play a role in the resistance to anti-CTLA-4 therapy 

with clinical trials underway using IDO inhibitors with ICB.219,220  

 

Despite the focus on CD8+ T cell infiltration, response has been associated with a number of other immune 

cells. With PD-L1/TGFβ dual inhibition, increased infiltration of CD8+ T cells, natural killer cells, dendritic 

cells, and M1 macrophages have been seen in responders.190,216 Although M1 macrophages have been observed 

to be increased with PD-L1/TGFβ dual inhibition, total macrophages may be decreased in responders to ICB 

monotherapy.190,216 Macrophage polarization may play a larger role, with M1 polarization associated with PD-
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L1 expression and M2 polarization associated with PD-L1 and PD-L2 expression.221 Beyond myeloid cells, PD-

L1 staining in tumor cells and immune cells has been significantly associated with presence of CD20+ B cells 

and lymphoid aggregates.200 Interestingly, PD-L1 staining on immune cells and tumor cells may have an additive 

effect in the percentage of intratumoral PD-1+ CTLA-4+ CD4+ and CD8+ T cells.203 Highlighting the difference 

in PD-L1 expression by tumor versus immune cells, limited evidence indicates that PD-L1 from immune cells is 

correlated with increased TIM-3+ CD8+ T cells in NSCLC.203  

 

Systemic factors that predict response to ICB 

Systemically, there has been a focus on identify biomarkers of therapeutic response to ICB. Several groups have 

tested the idea of using circulating immune cells as a metric for response. In peripheral blood, increased total 

CD4+ and CD8+ lymphocyte count and clonal expansion of specific T lymphocyte have been reported in 

responders to ICB therapy.222–225 A more detailed examination of T cell dynamics in peripheral blood has 

demonstrated an increase at baseline in IL-4+, GzmB+, IFNγ+, and GM-CSF+ CD4+ T cells and CTLA-4+, 

GzmB+, and IL-13+ CD8+ T cells among responders to anti-PD-1 therapy (Figure 5).226 After the start of ICB 

therapy, responders had an increase in GzmB+ and CTLA-4+ CD8+ T cells and  PD-1+, IL-4+, IFNγ+, IL-17A+, 

and GzmB+ CD4+ T cells.205,226 A greater percentage of exhausted PD-1+ EOMES+ CD8+ T cells in the 

peripheral blood was associated with decreased response to anti-CTLA-4 and radiation combinatorial 

therapy.205 Potential immune cell markers of response are not exclusive to T lymphocytes with increases in 

myeloid populations being reported in responders.224,226 Specifically, increases CD14+ CD16- HLA-DRhi 

monocytes and eosinophils have been reported in responders after the induction of anti-PD-1 and anti-CTLA-

4 therapies, respectively.224,226  

 

Human leukocyte antigens (HLA) are a series of genes that encode the MHC that activate and regulate immune 

response. HLA-typing represents a predictive factor at all three levels: expression on tumors cells, expression 

on immune cells in the microenvironment, and diversity of HLA molecules based on the genetics of an 

individual (Figure 5). In a large analysis of patients, diversity of the both MHC-I (HLA-A/B/C), found on 

most nucleated cells in the body, and MHC-II (HLA-Dn), found on APCs, have been associated with increased 

response to ICB.227 Homozygosity of HLA-B, HLA-A, HLA-DP, and HLA-DPB alleles was associated with 

poorer overall survival in patients receiving ICB therapy.227 Specific alleles, like HLA-B62 was found to increase 

the risk of death on ICB, while HLA-B44 had significantly better overall survival.227 Inoue, et al found increased 

level of HLA-A in pre-treatment resections of patients with objective responses to nivolumab.199 Likewise, in 

the MHC-II family, HLA-DR IHC staining in melanoma patients receiving anti-PD-1 or anti-PD-L1 was 

associated with improved therapeutic response and infiltration of CD4+/CD8+ T cells. Similar to response, 

TRAE from ICB has been linked with HLA-typing. An early report of anti-CTLA4 trial data examining HLA-

A*0201+ versus HLA-A*0201- patients found no difference in response, but rather a significant elevation of 
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immune-related adverse events in the HLA-A*0201+ individuals.228 The implication of off-target immune 

activation based on HLA genotype has also been seen in checkpoint-induced fulminant myocarditis and an 

association with HLA-DQ7.229 The off-target immune activation, although higher in anti-CTLA-4 therapies, is 

central to the debate of using ICB in patients with a history of autoimmunity or HLA-type predisposition.230  

 

 
Figure 5. Systemic factors that influence response to immune checkpoint. Factors can be divided into immune cells in the peripheral 
blood associated with better responses, HLA genotypes, and gut microbiome. Increased activated CD4 and CD8 T cells in the 
peripheral blood have been reported in responders. In addition, HLA diversity and HLA-B44/HLA-DR have been associated with 
better response. Recent reports of gut microbiome influences on ICB have made it an emerging predictive correlate -
for immunotherapy. 
 

Another emerging predictor of response to ICB is the gut microbiome (Figure 5). Use of antibiotics has been 

associated with a reduction in efficacy of ICB in mice and humans.231,232 Responders receiving PD-1 blockade 

have increased species in the Firmicutes, Verrucomicrobia, and Actinobacteria phyla.231,233,234 Firmicutes, gram-positive 

endospore-producing bacteria, form a large portion of the gut microbiome diversity. Within the Firmicutes 

phylum, responders have been observed to have elevated Eubacteriaceae, Rumminococcacae, and Faecalibacterium 

families in the Clostridiales order.201,203 Additional reports on Bacteriodetes, a phylum consisting of gram-negative 

rods, vary and have been seen elevated in both responders and nonresponders of ICB, which may be a product 

of different collection time points of post- versus pre-treatment, respectively.201,203 Initial preclinical assessment 

of supplementing Firmicutes, Verrucomicrobia, or Bacteriodetes species increased T lymphocytic infiltration and 

response to ICB in murine models.231–233 Similarly, oral gavage of fecal matter from human responders versus 

nonresponders in murine melanoma tumor models led to differential melanoma growth that recapitulate 

response to ICB in human patients.231,233–235 Like HLA typing, the gut microbiome has been associated with 

TRAE. The use of ICB, more pronounced in anti-CTLA4 therapy, can lead to colitis with mixed immune cell 
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infiltration consisting of neutrophils, eosinophils, lymphocytes and plasma cells within the lamina propria. This 

reactive colitis is also accompanied by elevated humoral responses to enteric flora and a decrease in Bacteriodetes 

species.236,237 Similar observations of immunoglobulin response and decreasing Bacteriodetes species have also 

been reported in inflammatory bowel disease.238 The underlying mechanistic contribution of the gut 

microbiome to response to ICB is unknown and may be indirectly contributing to ICB response, modulating 

the metabolic profile of immune cells, or more directly acting as shared antigens between the tumor cells and 

gut microflora.239  

 

Purpose of the study 

Data analysis represents the microscope of the twenty-first century. Offering the opportunity to examine 

biological specimens at a brand-new level of resolution than previously imagined. Management and practical 

application of big data is a focus of cancer research and biology as a whole. Situated between the bench and 

the bedside, data drives the development of diagnostic heuristics, aids in the identification of horses and zebras 

alike, but also drives basic scientific inquiry. Collectively, this work seeks to demonstrate the power of data in 

these different facets. 

 

RPPA are a medium-to-high-throughput approach to quantify proteins using an antibody-based dot blot. Using 

protein-based quantifications are particularly advantageous compared to mRNA surrogates because they can 

act as putative targets for therapies. Within breast cancer, targeted therapy for BLBC represents a significant 

unmet clinical need. Although BLBC/TNBC tumors respond well initially to therapy, the risk of recurrence for 

these patients is profoundly increased compared to other clinical or molecular subtypes. In this vein, the focus 

of chapter 2 is the identification and manipulation of molecular targets in BLBC. With the success of PARP 

inhibitors for BRCA1/2-mutant BLBC/TNBC, modulation of DNA repair has particular interest. 

Demonstrating the bedside-to-bench approach that data enables, chapter 2 focusing on modulating DNA 

mismatch repair to enhance anti-tumor immunity and efficacy of immunotherapies. Unlike the inhibition of 

growth factor signaling in BLBC, immunotherapies offer the opportunity for robust, long-term therapeutic 

responses. The major hurdle for effective immune therapy in breast cancer is the identification of patients who 

would benefit and the development of adjuvants that might prime the tumors to be more immunogenic.  

 

Unlike other cancers, such as lung cancers or melanoma, invasive ductal carcinoma is immunogenically weak. 

Both resident and migrating immune cells have been reported to participate in tumorigenesis and progression. 

However, clinical trials investigating the efficacy of immunotherapies in breast cancer have had mixed-to-poor 

results. A theory to explain the lackluster results is that breast tumors and other solid epithelial tumors may 

have tumor intrinsic or microenvironmental factor that contributes to evasion from anti-tumor immunity. To 

this end, chapter 3 contains a characterization of a subset of immunosuppressive Tregs from renal, breast, liver, 
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lung, and colorectal cancers that have enhanced suppressive activity. Upon infiltration into tumors, these Tregs 

upregulate a GPI-anchored gene, CD177, with an accompanying increase in a diverse suppressive genetic 

program. Characterizing the heterogeneity of tumor-infiltrating Tregs can lead to the identification of novel 

therapy targets and better predictions of clinical course.  

 

To illustrate a similar approach to the analysis of heterogeneity and predictive capabilities of machine-learning, 

chapter 4 focusing on Cutaneous T cell lymphomas (CTCL). CTCL is thought to be a malignant proliferation 

of skin-homing CD4+ T cells due to antigen stimulation. As such, CTCL is characterized by a clonal expansion 

of central and peripheral memory CD4+ T cells. Using single-cell sequencing of mRNA, we developed a more 

complex model featuring distinct transcriptomic states within the clonal tumor. Moreover, the transcriptional 

heterogeneity within the malignant CD4+ T cells  was used to make a predictive classification for CTCL disease 

stage. This work offers insight into the heterogeneity of CTCL, providing better understanding of the 

transcriptomic diversities within a clonal tumor, which can predict tumor stage and thereby offer guidance of 

therapy.  

 

Specific aims 

1. Evaluate the targeting of mismatch DNA repair for therapy in aggressive BLBC. 

2. Investigate heterogeneity of suppressive Tregs in the tumor microenvironment. 

3. Utilize single-cell RNA sequencing to predict clinical progression of cutaneous T cell lymphoma 
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CHAPTER 2 
TARGETING DNA MISMATCH REPAIR IN AGGRESSIVE BASAL-LIKE BREAST CANCER 

 

Rationale 

Basal-like breast cancer (BLBC) is an aggressive molecular subtype of breast cancer, accounting for 15% of 

invasive ductal carcinomas.240 These tumors are characterized by the absence of estrogen receptor (ER), 

progesterone receptor (PR), or human epidermal growth factor receptor 2 (HER2), a clinical designation also 

known as triple-negative breast cancer (TNBC).20,240,241 Although used synonymously, BLBC can be clinically 

differentiated from TNBC with the additional immunohistochemical staining for basal cytokeratins 5/6 and 

account for 70-80% of TNBC.240,242 Unlike ER+ or HER2+ breast cancers, BLBC do not have approved 

targeted therapeutic options with notable clinical trial failures in targeting angiogenesis and epidermal growth 

factor receptor 2 (EGFR) that demonstrated no improvement in overall survival.243 The absence of approved 

targeted therapy and the variable responses to chemotherapy in BLBC patients represents a vital and unmet 

clinical need. 

 

BLBC is also defined by high levels of genomic instability, with p53 pathway alterations seen in 85-95% of 

tumors.240 This instability in BLBC is compounded by the characteristic loss in chromosome 5q, consisting of 

DNA repair genes, RAD17, RAD50, MSH3, and XRCC4.240,244 In addition,15-20% of BLBC possess mutations 

in BRCA1 or BRCA2, which function in double-stranded DNA repair.240,245–247 Half of the 15-20% of BLBC 

tumors with BRCA1 or BRCA2 are a result of germline mutations and are associated with a 70-80% lifetime 

risk of breast or ovarian cancer to individuals.248,249 Recent success of clinical trials using Poly-ADP-ribose 

polymerase (PARP) inhibitors, a single-strand DNA repair sensor, in germline BRCA-mutated ovarian and 

breast cancers have led to Food and Drug Administration approval.250,251 PARP inhibitors are thought to work 

in BRCA-mutant cancers by inhibiting single-stranded DNA repair. In the context of BRCA mutations with 

deficient double-stranded DNA repair, the further inhibition leads to cell death, termed synthetic lethality. 

Despite the positive successes of PARP inhibitors in trials, the translation of PARP therapy to the majority of 

BLBC and ovarian cancers with intact BRCA1/2 have been unsuccessful.39,252–254 

 

The success of PARP inhibitors for a subset of BLBC/TNBC patients has motivated the field to investigate 

the potential of other DNA repair-based targeted therapy. Mismatch DNA repair has traditionally been thought 

of as a tumor suppressor, with germline mutations identified in the autosomal dominant Lynch Syndrome.255 

Closely associated with hereditary non-polyposis colorectal cancer, Lynch Syndrome also increases the risk in 

the development of cancers along the gastrointestinal tract, endometrial cancer, and ovarian cancer. Defective 

DNA mismatch repair leads to increase in mutations, both insertions/deletions and single-nucleotide 

variations, in repetitive sequences, like DNA microsatellites.256 This increased mutational rate is thought to 
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underlie the stark 25-80% therapeutic response rate of anti-PD-1 immune checkpoint therapy in patients with 

Lynch-Syndrome-associated tumors.257–259 The result of this phase 2 trial led to the unprecedented approval of 

anti-PD-1 therapies for metastatic mismatch-repair-deficient or microsatellite instable cancers, irrespective of 

the site of origin. Beyond Lynch Syndrome tumors, variable efficacy of mismatch DNA repair has been 

implicated in differential mutations in in late-replicating DNA regions, driving mutational abundance in 

heterochromatin that is seen in a number of cancers.260 

 

Here, we identify at MSH2 and MSH6 protein level as poor prognosis markers for the aggressive BLBC. Within 

BLBC, MSH2 is associated with decreased genetic markers of immune infiltration and activation. The removal 

of Msh2 in syngeneic tumor models of BLBC increased efficacy of anti-PD-1 monoclonal therapy. Taken 

together, we provide evidence of the viability of targeting DNA mismatch repair as a potential adjuvant to 

improve immunotherapy responses in breast cancer. 

 
Materials and methods 

Reverse-phase protein analysis 

RPPA data was downloaded from the TCPA Portal located at http://tcpaportal.org/.261 Data was processed 

as previously described and clinical data was attached by Patient/Sample ID.262 Protein-based survival analysis 

was performed using the previously-developed TRGAted R Shiny application, code and processed data for all 

TCGA cohorts are located at https://github.com/ncborcherding/TRGAted.262 Molecular-subtype designation 

was based on the TCGA Analysis Working Group pipeline, fitting PAM50 subtypes based on RNA-seq data. 

Protein versus mRNA correlations was performed using log2(x+1) mRNA quantification downloaded from the 

cBioPortal.263,264 Correlations for both protein-mRNA and protein-protein comparisons utilized the rank-based 

Spearman method. 

 

Differential gene and pathway analysis  

Gene-level HTSeq count data was downloaded from the UCSC Xena Browser at http://xena.ucsc.edu/. Using 

the DESeq2 R package (v1.16.1), count data were separated in half by MSH2 RPPA quantification and 

converted into negative binomial distributions. A parametric model was fitted for the data and significance and 

log2-fold change was computed using Wald testing. P-values for the differential analysis was corrected for 

multiple hypothesis testing using the Benjamini and Hochberg method.265 Significance threshold was set at 

adjust P-value ≤ 0.05 and log2-fold change ≥ |0.5|. A total of 2,094 genes met the criteria, with 650 genes 

significantly increased in MSH2-high BLBC samples and 1,444 genes significantly decreased. For visualization 

of the expression of specific genes by MSH2 grouping, the expression matrix was regularized log transformed. 

Ingenuity Pathway Analysis (Qiagen, Hilden, Germany) was performed using the above significance cut-off. 
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DESeq-based log2-fold change was incorporated with the bias-corrected Z-score for upstream regulator 

analysis in order to visualized activation relative to mRNA fold-change.  

 

RNA-immune cell estimates 

Immune and stromal ESTIMATE scores for all breast cancer samples in the TCGA were downloaded from 

MD Anderson Department of Bioinformatics and Computational Biology (bioinformatics.mdanderson.org). 
266 BLBC samples with MSH2 protein quantifications were extracted and separated by mean MSH2 value. In 

addition to general immune cell difference, log2-RSEM mRNA values for BLBC samples were analyzed using 

the CIBERSORT support vector machine algorithm, in order to estimate the contribution of individual 

immune lineages.267 Absolute estimates of immune cell populations were combined for total immune cell 

lineages and then were then separated by mean MSH2 protein values. 

 

Cell culture and Msh2 knockout cell lines 

Fresh 4T1 (CRL-2539), PY8119 (CRL-3278), and HEK293T cells were ordered from the American Type 

Culture Collection. Cells were maintained in RPMI media (ThermoFisher, Waltham, MA) supplemented with 

10% fetal bovine serum (Sigma-Aldrich, St. Louis, MO) and 100 U/ml penicillin-streptomycin. Guide RNAs 

online tool from MIT/BROAD Institute (http://crispr.mit.edu/). The guide RNA for Msh2 was 5’- 

CACCGGCGCCGTGTAAAAGTCGCCG-3’. LentiCRISPRv2 (Plasmid #52961, Addgene, Cambridge, MA) 

system was ligated using Roche repaid ligation kit ( Roche Holdings, Basel, Switzerland).268 The HEK293T cells 

transfected with 6µg of the lentiCRISPR-gRNA plasmid, 3µg of pMD2-VSVG plasmid and 3µg of the ∆CMV 

using GeneTran III (Biomiga, Roselle, CA). The lentiviral stock was then harvested at 72 hours days and 

centrifuged at 3000 rpm for 10 minutes at 4°C, removing the cell debris. The supernatant was filtered through 

0.45µm filter, aliquoted, and stored at -80°C. 

 

Immunoblotting 

Cells were lysed in cell lysis buffer [50mM Tris-HCl pH 7.5, 1mM EDTA, 1mM EGTA, 1% Triton-X100 , 

100mM KCl, 50mM NaF, 10mM, 1mM Na3VO4, 100nM aprotinin, 1uM bestatin, 1mM p-

Amidinophenylmethanesulfonyl fluoride (PMSF)]. Protein (30µg) were separated by SDS-PAGE and 

transferred onto PVDF membrane (Bio-Rad, Hercules, CA). Membranes were immunoblotted with the anti-

MSH2 and anti-β-actin (Cell Signaling Technology, Danvers, MA). Immunoreactive bands were detected using 

a chemiluminescence based detection system (Bio-Rad). 

 

In vitro assays using murine cell lines 

For transwell migration assay, 5x104 of 4T1 and PY8119 cells in serum-free RPMI media were added to the cell 

culture insert with 8 µM pores (ThermoFisher, Waltham, MA) on a 24-well plate. Complete RPMI media, with 
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10% fetal bovine serum, was added to the bottom well. The cells were incubated at 37°C with 5% CO2 for 8 

hours. The insert was rinsed with distilled water and then the cells on top of the insert membranes were 

removed using a sterile cotton tip applicator. The insert membranes were stained with 0.4% crystal violet for 

30 minutes at room temperature, then rinsed with distilled water and dried. In vitro transwell migration was 

measured by counting the cells on the insert membrane. For transwell invasion assay, cell culture insert 

membranes were coated with 10% matrigel (Corning Life Sciences, Corning, NY) in serum-free media and the 

cells were incubated for 24 hours at 37°C with 5% CO2. Proliferation assays were performed using 5x104 cells 

in 6-well plates with complete RPMI media, then incubated at 37°C with 5% CO2 for 48, 72, and 96 hours. At 

each time point, the cells were trypsinized and counted with a hemocytometer.   

 

In vitro three-dimensional colony assays 

A 6-well plate was coated with 1.5 ml of 0.8% soft agar in a complete RPMI media; agar was solidified at 37°C 

with 5% CO2 for 1 hour.  A total of 3x105 cells were placed into 1.5 ml of 0.4% soft agar in a complete RPMI 

media was plated on top of the solidified agar and then incubated at 37°C with 5% CO2 for 24 hours.  Complete 

RPMI media added on top of the agar and changed every 3 days. Each well was examined under microscope 

for colonies and were counted after 1, 2, and 3 weeks.  

 
Mouse colony and orthotopic transplant model 

All animal experiments were approved by the University of Iowa Institutional Animal Care and Use Committee 

(IACUC) and performed in accordance with IACUC guidelines. All mice used were female mice of BALB/c 

background purchased from Charles River (Wilmington, MA). Orthotopic transplants were performed as 

previously described.269 Briefly, 6-week old mice were injected with 4T1-WT or 4T1-Msh2 KO cells in 1:1 

Matrigel/PBS were implanted into #4 mammary glands, bilaterally. Mice were treated with either 1x PBS as a 

vehicle control or 200 µg of anti-PD-1 antibody (Bio X Cell, West Lebanon, MA) every three days via 

intraperitoneal injection. The experiment was terminated when the largest tumors reached 2 cm in diameter.  

 
Immunohistochemistry 

Tumor sections were preserved in 10% neutral buffered formalin and embedded in paraffin. 5 µM thick sections 

were then deparaffinized with xylene and antigen was unmasked with Tris EDTA pH 9. Proteins was detected 

with anti-MSH2 (AbCam, Cambridge, MA), anti-FOXP3 (AbCam) and anti-CD3 (NeoMarkers, Freemont, CA) 

antibodies. Staining protocol was developed by the Comparative Pathology Core Facility in the Department of 

Pathology at the University of Iowa. Quantification of immune cells utilized blinded counting of at least 10 

high-power fields of each tumor. 
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Statistical analysis  

Two sample statistical testing principally utilized Welch’s T test, allowing for unequal variance and sample size, 

unless otherwise indicated. Multiple comparisons across three or more groups utilized ANOVA with the Tukey 

Honest Significant Difference adjustment for multiple comparisons.  
 

 
Figure 6. DNA mismatch repair proteins are elevated in BLBC and predict poor survival. A. Cox regression hazard ratio and p-
values across all 224 proteins on the RPPA for 119 BLBC samples. DNA repair proteins are highlighted in red. B. Hazard ratio 
summary for the 6 RPPA-quantified DNA repair proteins with a p-value less than 0.05. Hazard ratio above one (dotted line) indicates 
poor survival for the higher protein level. C. Proportional cut points for the six significant RPPA proteins based on log-rank optimal 
p-value. D. Survival curve for MSH2 (upper panel) and MSH6 (lower panel) in 119 BLBC samples comparing high versus lo protein 
level. Significance based on log-rank test. E. MSH2-MSH6 protein correlations for breast cancer samples with molecular subtype 
designations (n=670, p < 1e-16). F. MSH2 RPPA protein quantification across molecular subtypes, BLBC (n=119), HER2+ (N=61), 
Luminal A (n=328), and Luminal B (n=162). p < 0.000001 for MSH2 in BLBC based on one-way ANOVA with Tukey HSD 
adjustment for multiple comparisons. G. MSH6 RPPA protein quantification across molecular subtypes. p < 0.000001 based on one-
way ANOVA with Tukey HSD adjustment for multiple comparisons.  
 

Results 

MSH2 and MSH6 are elevated in BLBC and predict poor overall survival 

We previously developed analysis workflow to identify survival outcomes using RPPA quantification available 

in the Cancer Genome Atlas (TCGA).262 We applied the system to examine prognostic markers for overall 
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survival in BLBC (Figure 6A), with a focus on DNA repair proteins available on the RPPA (highlighted in 

red). Of the 6 DNA repair proteins that had significant (P < 0.05) prognostic value, MSH2, RAD50, KU80, 

CHK2, and MSH6 predicted poor overall survival with Cox proportional hazard ratios greater than 1 (Figure 

6B). The division of samples in high versus low was based on maximal standardized two-sample linear rank 

statistic to find an optimal cutpoint, providing a range of proportional comparisons (Figure 6C). Notably, 

MSH2 evenly split at 50% of samples (Figure 6C) and predicted the worse survival for any DNA repair protein 

(Figure 6D, upper panel, hazard ratio=7.08). MSH6, which forms the MutSɑ heterodimer with MSH2, had a 

different optimal cutpoint at 21.8% MSH6-high versus 78.2% MSH6-low, but still predicted poor overall survival 

(Figure 6D, lower panel, hazard ratio=3.26). Across breast cancer samples, MSH2 and MSH6 protein levels 

were directly correlated with one another (Figure 6E), supporting established literature on the need 

heterodimer formation for MSH6 stabilization.270 Accompanying the survival predictions, we also found MSH2 

(Figure 6F) and MSH6 (Figure 6G) are significantly elevated in BLBC compared to the other breast cancer 

molecular subtypes. We also performed Cox regressions in the other molecular subtypes, finding no significant 

predictive value for MSH2 or MSH6 in HER2+ or Luminal A breast cancers (Figure 7A,B). Interestingly, in 

Luminal B tumors, MSH2 protein level predicted improved overall survival (Figure 7C). 

 
Figure 7. DNA mismatch repair prognosis in other molecular subtypes. A. Overall survival for MSH2 (left) and MSH6 (right) in 
HER2+ breast cancers (n=58). B. Overall survival for MSH2 (left) and MSH6 (right) in Luminal A breast cancers (n=324). C. Overall 
survival for MSH2 (left) and MSH6 (right) in Luminal B breast cancers (n=159). P-values calculated by log-rank testing with Cox 
proportional hazard regression modeling for hazard ratios (HR). 
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Figure 8. Mismatch repair mRNA and protein correlations in breast cancer. A. Spearman correlation of MSH2 RPPA Z-score versus 
MSH2 mRNA level; BLBC (n=119), HER2+ (N=61), Luminal A (n=328), and Luminal B (n=162). B. Spearman correlation of 
MSH6 RPPA Z-score versus MSH6 mRNA level. C. Survival curve for MSH2 (top) and MSH6 (bottom) in 138 BLBC samples 
comparing high (red) to low (black) mRNA levels. D. Spearman correlation of MSH2 RPPA Z-score versus mass spectrometry-
quantified MSH2 level; BLBC (n=17), HER2+ (N=8), Luminal A (n=27), and Luminal B (n=21). E. Spearman correlation of MSH6 
RPPA Z-score versus mass spectrometry-quantified MSH6 level.  
 

Due to the novelty of our finding of the poor prognostic indication of both MSH2 and MSH6 in BLBC, we 

further examine the dynamics of the MutSα constituents across the TCGA breast cancer samples. We first 

investigated if mRNA of MSH2 (Figure 8A) or MSH6 (Figure 8B) correlated with the respective RPPA 

probes, finding general poor linear correlations between protein and mRNA. This disparity between mRNA 

and protein level may have contributed to the lack of previous identification and could be a product of the 

post-translational regulation of DNA mismatch repair by ubiquitination.271 As expected, the mRNA levels in 

BLBC (n=138) failed to find prognostic value for MSH2 (Figure 8C, upper panel) or MSH6 (Figure 8C, lower 

panel) using the optimal cutpoint based on the log-rank p-value. In addition to mRNA levels, we also examined 

the correlation between RPPA probes and mass spectrometry values in a subset of the breast cancer TCGA 

samples (n=73) to better corroborate the use of RPPA-based protein levels.272 In general, we found consistent 

correlations in both MSH2 (Figure 8D) and MSH6 (Figure 8E) with Spearman 𝜌 > 0.47. With this 

confirmation of approximate protein levels using linear regressions of two separate measures of proteins, next 

we investigated differential gene regulation by DNA mismatch protein level. 
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Figure 9. Differential gene expression results based on MSH2 protein in BLBC. A. Differential gene expression using HTSeq count 
data comparing MSH2-high (n=60) to MSH2-low (n=59) found 650 genes significantly increased and 1,444 significantly decreased. 
Significance was defined as an adjusted P-value < 0.05 and log2 fold-change ≥ |0.5|. B. Regularized log2-transformed count 
expression of DNA mismatch repair pathway constituents that demonstrated significantly differential between MSH2-high versus low. 
C. Regularized log2-transformed count expression of immune checkpoint targets. D. Log2-fold change of significant chemokines and 
cytokines with adjusted p-value < 0.05. E. Log2-fold change of significant chemokine and cytokine receptors with adjusted p-value < 
0.05. F. IPA upstream regulators results based on differential gene expression. Quadrant I correspond to regulators with increased 
expression and predicted increase activity in MSH2-high samples, while Quadrant III corresponds to increased expression and 
predicted activity in MSH2-low samples. Bar graph summarizes the significant predicted activation of cytokines. G. Immune 
infiltration score based on the ESTIMATE algorithm by MSH2 mean protein value. H. Condensed CIBERSORT estimates of 
immune cell lineages based on mRNA values available for the BLBC samples.  
 

Increased MSH2 protein has significantly lower immune-associated genes 

As the common constituent of both MutSα (MSH2-MSH6) and MutSβ (MSH2-MSH3), we focused on MSH2 

to examine the etiology of the difference in survival. To this end, we performed differential gene expression 
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compared MSH2-high (n=60, red) to MSH2-low (n=59, black) using estimated mRNA counts (Figure 9A). 

As expected, we found MSH2-high associated with increased RNA levels of MSH2 and MSH6, in addition to 

increased PMS1, which participates in the repair downstream of the MutSα heterodimer (Figure 9B). 

Conversely, MSH2-low BLBC samples had increased levels of immune checkpoints, IDO1, CD274, and 

HAVCR2 (Figure 9C). This increased levels of immune markers in MSH2-low samples was seen across 

chemokines/cytokines (Figure 9D) and chemokine/cytokine receptors (Figure 9E). Using the differential 

expression analysis, we also performed Ingenuity Pathway Analysis for upstream regulators of the 

transcriptional differences observed (Figure 9F). Quadrant I refers to upstream regulators that have increased 

mRNA expression and activation in MSH2-high BLBC samples, while quadrant III refers to regulators with 

increased expression and activation in MSH2-low samples. In MSH2-low BLBC samples, we observed a general 

increase in cytokine/chemokine signaling, notably in IL-1A/B and IFN-𝛾 (Figure 9F, quadrant III and 

adjacent bar graph). In addition we also used mRNA levels to estimate immune infiltration by MSH2 protein 

level using ESTIMATE and CIBERSORT algorithms.266,267 Consistent with the differential gene expression 

analysis, we found increased estimated immune cell infiltration (Figure 9G), with lineage specific increases in 

B cells (P=0.0084), monocytes/macrophages (P=0.021), and NK cells (P=0.04), with CD8+ T cells approaching 

significance (P =0.062) (Figure 9H).  

 

The knockout of Msh2 increases proliferation and migration of BLBC cells 

With preliminary indication of the modulation of anti-tumor immune responses dependent on DNA mismatch 

repair in BLBC, we developed two BLBC syngeneic cells lines for in vivo tumor modeling. The use of syngeneic 

murine cell line models allows for the evaluation of tumor growth in mice with intact immune function. Using 

CRISPR-Cas9 in a lentiviral vector and introducing a scrambled control or Msh2-specific guide RNA, we 

knocked out (KO) Msh2 in 4T1 and Py8119 cells (Figure 10A). Before injecting the Msh2-WT or Msh2-KO 

cells into mice, we first characterized potential altered phenotypes in vitro. We first investigated changes in 

proliferation, finding Msh2-KO cells in both 4T1 and Py8119 consistently led to significant increases in 

proliferation (Figure 10B). In addition to proliferation, we observed a consistent increase in cell migration in 

Msh2-KO cells in both cell lines (Figure 10C,D). Both of these observations fit with the previous established 

role of DNA mismatch repair as a tumor suppressor. When we assayed invasion capabilities of Msh2-WT versus 

Msh2-KO cells, we found inconsistent increase in invasion of 4T1 Msh2-KO cells, while Py8119 Msh2-WT cells 

showed a trend towards increased invasion (Figure 10E,F). In contrast to the other in vitro findings, we found 

an decrease in growth capacity for Msh2-KO cells in three-dimensional growth assays using 4T1 (Figure 10G) 

and Py8119 (Figure 10H) cells. This decrease in three-dimensional growth is particularly intriguing as three-

dimensional growth is thought to better recapitulates the tumor physiology and drug response.273 
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Figure 10. Msh2-KO in murine breast cancer alters in vitro growth. A. CRISPR-Cas9-mediated KO of Msh2 in 4T1 and Py8119 
murine breast cancer cell lines. B. Proliferation assay for 5x104 4T1 (left panel) and Py8119 (right panel) comparing Msh2-WT (red) to 
Msh2-KO (black) cells. Significance based on two-way ANOVA. C,D. Representative images (C) and quantifications (D) of transwell 
migration assays for Msh2-WT (red) to Msh2-KO (black) cells. E,F. Representative images (E) and quantifications (F) of transwell 
invasion assays for Msh2-WT (red) to Msh2-KO (black) cells. G,H. Representative images and quantification of three-dimensional 
growth assays for 4T1 (G) and Py8119 (H) for Msh2-WT (red) to Msh2-KO (black) cells. Significance based on Student’s T test. In 
vitro assays were performed by Dr. Edward Cho. 
 

Msh2-KO potentiates immune checkpoint blockade in vivo 

Previous research has found remarkable response rates of 25-80% for immune checkpoint blockade in Lynch 

Syndrome patients with defective DNA mismatch repair.257–259 In order to asses if the genetic ablation of MSH2 

could function as an adjuvant for checkpoint blockade in BLBC, we injected 105 4T1 Msh2-WT or Msh2-KO 

cells into the mammary glands of 6-week-old BALB/c mice (Figure 11A). Upon injection, the mice received 

intraperitoneal injections of vehicle control or 200 µg of anti-PD-1 antibody every three days for the first two 

weeks. We found the Msh2-KO cells had a significant reduction in tumor growth compared to Msh2-WT cells 

(Figure 11B). The anti-PD-1 therapy reduced tumor growth in both Msh2-WT and Msh2-KO cells, but was 

additive to the reduction of tumor growth for Msh2-KO alone (Figure 11B). Similar to tumor growth, both the 

anti-PD-1 treatment and the KO Msh2 significantly increased survival, with the Msh2-KO receiving anti-PD-1 

having a median survival time of 58 days post injection compared to the 48 days of both the Msh2-KO + vehicle 

or Msh2-WT + anti-PD-1 groups (Figure 11C).  
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Figure 11. Msh2-KO potentiates immune checkpoint blockade in vivo. A. Schematic of in vivo tumor study using 4T1 Msh2-WT versus 
Msh2-KO with or sans anti-PD-1 therapy. B. Tumor growth curve of Msh2-WT (red) versus Msh2-KO (grey) with anti-PD-1 therapy 
(dashed line) or vehicle (solid line). Significance based on two-way ANOVA with individual comparisons corrected for multiple 
hypothesis testing using the Tukey HSD method. C. Survival curve for the four arms of the experiments. Significance based on log-
rank test. D. Representative flow cytometry plots of tumor-infiltrating CD4+ T cells, stained for PD-1 (y-axis) and TIM-3 (x-axis). E. 
Percent of tumor-infiltrating PD-1+ TIM-3+ CD4+ T Cells compared to total tumor-infiltrating CD4+ T Cells by group. Flow 
cytometric measurements were performed by Dr. Gaurav Pandey.  F. Quantification of CD3+ cells by IHC staining across the four 
groups using at least 10 high-powered fields (HPF) per sample. Significance based on one-way ANOVA using the Sidak method for 
multiple comparison correction. G. Quantification of FoxP3+ cells by IHC staining across the four groups using at least 10 high-
powered fields (HPF) per sample. Significance based on one-way ANOVA using the Sidak method for multiple comparison 
correction. 
 

Immune checkpoint therapy, like anti-PD-1 antibodies, are thought to work, in part, through the prevention of 

T cell exhaustion.259 To assess the modulation of infiltrating T cell phenotypes, we isolated CD3+ T cells 

populations from tumors using flow cytometry. Although we did not find a clear difference in CD8+ T cells 

(data not shown), we did find a decrease in PD-1+ TIM-3+ CD4+ T cells with anti-PD-1 therapy in both Msh2-

WT and Msh2-KO groups (Figure 11D,E). Both PD-1+ and TIM-3+ are upregulated upon T cell activation and 

are used to identify both activated and exhausted T cells.95 We observed a substantial increase in PD-1+ TIM-

3+ CD4+ T cells in the Msh2-KO + vehicle group that was ameliorated by the addition of anti-PD-1 therapy 

(Figure 11D,E). Using IHC staining using a pan-T cell marker, CD3, we also observed a significant increase in 

the average number of T cells per high-power field (HPF) in Msh2-KO + anti-PD-1 compared to all other 
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groups (Figure 11F). In addition to CD3, we also examined FoxP3+ cells per HPF in all four groups, finding a 

reduction in the Msh2-KO groups compared to the untreated Msh2-WT control (Figure 11G). A marker and 

master regulator of regulatory T cells (Tregs), a reduction in tumor-infiltrating Tregs has been shown to be a 

good prognostic indicator in breast cancer.274  

 

Discussion 

BLBC is a particularly aggressive form of breast cancer with higher rates of metastasis and relapse compared 

to other subtypes. Despite recent progress in targeted therapies for other breast cancers, BLBC/TNBC is still 

treated principally with surgery, radiation, and broad cytotoxic chemotherapies.275–277 In an effort to develop 

durable therapies for BLBC, investigation has led to the immunogenic nature of the subtype. Previous reports 

have found increased tumor-infiltrating lymphocytes in TNBC compared to other breast cancer subtypes.278 

Moreover the increased infiltration of lymphocytes in TNBC has been correlated with higher likelihood of 

benefit from adjuvant and neoadjuvant chemotherapy, with lower risk of disease relapse.279–283 Despite these 

observations that suggest an immunogenic character in TNBC, initial results of anti-PD-1 therapy across all 

TNBC patients had response rates ranging from 5-8.8%.284,285  

 

Here we identified constituents of the MutSα complex, MSH2 and MSH6, at the protein level were poor 

prognostic indicators in BLBC (Figure 6D), but not other breast cancer subtypes (Figure 7). Within BLBC 

samples, MSH2 protein was associated with a decrease immune cell signatures (Figure 9G,H) and decreased 

expression of immune checkpoints (Figure 9C). Conversely, a hallmark of tumors with defective mismatch 

DNA repair is dense peri- and intratumoral infiltration of T cells.209 and responsiveness to immune checkpoint 

blockade.257–259 T cells infiltrate in tumors with dysfunctional mismatch DNA repair are primed for cytotoxicity 

and have reduced suppression by Tregs.286–288 Thus, this increased expression of the MutSα complex in BLBC 

compared to other subtypes (Figure 6F,G) may serve to offset the high levels of genomic instability and reduce 

anti-tumor immune resposes.289 

 

In terms of the latter inhibition of anti-tumor response, we demonstrate the genetic KO of Msh2 in syngeneic 

tumor models led to a reduction in tumor growth and increased survival (Figure 11B,C). Indicative of the 

immunomodulation phenotype of the Msh2-KO model was the increase in double-positive PD-1+ TIM-3+ 

CD4+ T cells (Figure 11D) and a reduction in Tregs numbers by FoxP3 IHC (Figure 11G). PD-1 and TIM-3 

serve as negative immune checkpoints and are upregulated upon T-cell-receptor activation, serving as markers 

of both activation and exhaustion.290 The blockade of the interaction of PD-1 to PD-L1 or PD-L2 is thought 

to function by preventing T cell exhaustion and maintain effector T cell function.72,259 Beyond the negative 

regulation of T cell activation, TIM-3 also appears to direct immune responses away from the anti-tumor Th1 

response,291 and is currently being investigated in early clinical trials with anti-PD-1 therapies to improve overall 
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response rates to immune checkpoint blockade. Interestingly, the addition of anti-PD-1 therapy diminished the 

double-positive PD-1+ TIM-3+ CD4+ T cells in the Msh2-KO model (Figure 11D) and led to additive effects 

on reducing tumor growth and increasing the length of overall survival (Figure 11B,C). 

 

A number of clinical trials are currently underway in order to identify combinatorial approaches to potentiate 

or promote immune checkpoint blockade across a solid tumors.259 Careful consideration of combination 

strategies is necessary for broadening the patients that will benefit from immune checkpoint blockade. PARP 

inhibitors of single-strand DNA repair, have shown to improve the response rate to checkpoint inhibitors.292 

Similarly, the use of platinum agents with immune checkpoint blockade in lung cancers improve clinical 

outcomes for patients.293,294 Our preliminary work has demonstrated the viability of the removal of mismatch 

DNA repair is sufficient to act as an immune adjuvant for anti-PD-1 therapy in BLBC. With low levels of 

overall response to anti-PD-1 therapy in BLBC, further work on the underlying mechanism of action and 

potential inhibitors of the MutSα complex is warranted. 
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CHAPTER 3 
HETEROGENEITY AND FUNCTIONAL IMPLICATIONS OF CANCER-ASSOCIATED 

REGULATORY T CELLS 
 
Rationale 

Tregs are a population of T cells that exert suppressive effects on a variety immune cells including CD8+ T 

cells, CD4+ T cells, natural killer cells, and dendritic cells.295 Tregs play an indispensable role in maintaining 

normal immune homeostasis and peripheral tolerance. However, their suppressive effect in the tumor 

microenvironment is detrimental295 prompting Treg-targeted immunotherapy.296 Ipilimumab, the first immune 

checkpoint blocker approved by the FDA, is thought to work through inhibiting Treg function by abolishing 

CTLA-4-mediated suppressive signaling or preferentially depleted Tregs in the tumor microenvironment.297–299 

Tregs are identified by the expression of transcription factor forkhead box P3 (FOXP3), which acts as a master 

regulator for Treg development and the suppressive functions of Tregs.300,301 However, FOXP3 alone fails to 

predict patient survival and its prognostic value was highly tumor-type- and stage-dependent across different 

tumors.274,302,303 Moreover, recent studies unveiled functional heterogeneity of FOXP3+ Tregs in peripheral 

blood304 as well as in different tumor types including colorectal cancer305 and glioma.306 General disruption of 

Treg function negatively impacts immune homeostasis, as seen in the autoimmune complications associated 

with CTLA-4 blockade and underscores the need for refined markers and targets for tumor-infiltrating Tregs.  

 

Recent mRNA sequencing of blood-derived, normal-tissue-resident, and tumor-infiltrating Tregs from 

different tumor types in two independent studies revealed sizable transcriptional overlap between normal-tissue 

and tumor-infiltrating Tregs.307,308 Nevertheless, tumor-infiltrating Tregs showed differential upregulation of 

appreciable number of genes, including, chemokine receptor 8 (CCR8), cytotoxic T-lymphocyte associated 

protein 4 (CTLA4), lymphocyte activation gene 3 (LAG3), and T-cell membrane protein 3 (TIM-3, encoded 

by HAVCR2), layilin (LAYN), and MAGE family member H1 (MAGEH1).307,308 Relying on sequencing of 

pooled tumor-infiltrating Treg, these studies fell short in untangling the heterogeneity of tumor-infiltrating 

Tregs reported earlier at the functional level. In a more recent study, approximately 5,000 flow-sorted T cells 

from tumor, normal tissue, junctional tissue and blood of patients with hepatocellular carcinoma (HCC) were 

analyzed by single-cell RNA sequencing.309 In that study, initial analysis uncovered CD4+ and CD8+ T cell 

heterogeneity at the transcriptional level suggesting functional heterogeneity of tumor-infiltrating T cells. 

 

In order to investigate heterogeneity and dynamics of cancer-associated Tregs, we perform single-cell 

sequencing on peripheral and tumor-infiltrating immune cells in three renal clear cell carcinoma (ccRCC) 

patients (Figure 12). We chose ccRCC tumors based on the responsive of these tumors to immune checkpoint 

blockade despite low mutational loads, which implies the importance of the tumor microenvironment.180 

Pairing our novel dataset with the single-cell sequencing of the immune cells of the HCC dataset, we identified 
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CD177 associated with a suppressive subset of tumor-infiltrating Tregs. CD177 (also known as NB1, HNA-2a, 

or PRV1) is a glycosylphosphatidylinositol-linked cell surface protein that is expressed heterogeneously by 

neutrophils in 90% of humans310 and has been identified as a useful biomarker for myeloproliferative diseases.311 

We recently generated a mouse model with knockout (KO) of Cd177 and demonstrated that CD177 plays a 

role in neutrophil viability.312 Limited literature indicates a correlation between loss of CD177 expression and 

poor prognosis in colorectal and gastric cancer.313,314 Recently, a single report by the Rudensky group identified 

CD177+ tumor-infiltrating Tregs in breast cancer with no further elaboration.308 Using machine-learning 

techniques we developed a gene signature for the suppressive Treg subset that predicts poor overall survival 

across a number of cancer types. Further understanding of the development and regulation of this suppressive 

subset of tumor-initiating Tregs may be crucial in the development of cancer immunotherapies with minimal 

auto-immune side effects.  

 

 
Figure 12. Schematic summary of the Treg heterogeneity analysis and predictions. 1. Single-cell RNA sequencing was performed on 
peripheral blood (n=13,433) and tumor-infiltrating immune cells (n=12,239) from 3 different ccRCC patients. 2. From these cells, Tregs 
were isolated and analyzed for markers of tumor-infiltrating Tregs and analysis of heterogeneity. 3. Signatures developed from the 
heterogeneity outperformed previous approaches to predicting survival based on mRNA levels.  
 

Materials and methods 

Patient recruitment 

The current study was approved by the University of Iowa Institutional Review Board (IRB) and conducted 

under the Declaration of Helsinki Principles. Deidentified ccRCC were recruited by Dr. Yousef Zakharia in the 

Department of Internal Medicine at the University of Iowa. Glioma, melanoma, pancreatic adenocarcinoma, 

and spleen samples were provided by Dr. Yuwen Zhu from University of Colorado. These tissues were also 
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collected from patients undergoing surgical resection after informed consent and were supplied as deidentified 

samples to Dr. Zhu laboratory with IRB approval.  

 

Single-cell RNA sequencing  

Viable (Hoechst-), immune (CD45+) single-cell suspensions generated from three ccRCC tumor samples and 

peripheral blood were sorted on a FACS ARIA sorter (BD Biosciences) for lymphoid and myeloid lineages. 

The cells were sorted into ice-cold 1x PBS + 0.04% non-acetylated bovine-serum albumin (New England 

BioLabs, Ipswitch, MA). Sorted cells were counted and viability as assessed using the MoxiGoII counter (Orflo 

Technologies, Ketchum, ID). Single cells were re-suspended at 1000 cells/µl with a viability > 90%. Sequencing 

was performed using the Chromium (10x Genomics, Pleasanton, CA) and Illumina (San Diego, CA) sequencing 

platforms. Amplified cDNA was used to construct both 5’ expression and VDJ sequencing libraries. Pooled 

libraries were run on sperate lanes of a 150 based-paired, paired-end, flow cell using the Illumina HiSeq 4000. 

Basecalls were converted into FASTQs using the Illumina bcl2fastq software by the University of Iowa 

Genomics Division. FASTQ files were aligned to human genome (GRCh38) using the CellRanger v2.2 pipeline 

as described by manufacturer.315 Individual cells were adjusted for total expression and percentage of 

mitochondrial gene expression. After processing, clustering was performed using the Seurat package (v2.3.4), 

correcting for patient variability using the canonical correlation process.316,317 Dimensional reduction to form 

the tSNE plot utilized the top 20 calculated dimensions and a resolution of 1.2. Differential gene expression 

analysis was performed using the Wilcoxon rank sum test for significance comparing tumor-infiltrating versus 

peripheral-blood Tregs. Cell trajectory manifolds and pseudo-time estimates utilized the Monocle R package 

(v2.8.0) and the reverse graph embedding machine learning algorithm.318 The same processing and quality 

control procedures were applied to count-level data from GSE98638.309 

 

Bulk RNA sequencing of Tregs 

Raw expression data for GSE89225308 and PRJEB11844307 were downloaded from the NCBI Sequence Read 

Archive and the European Nucleotide Archive, respectively. SRA files were converted to FASTQ files using 

the SRA toolkit. Samples were aligned with the kallisto pseudoalignment protocol and GRCh38 build for the 

human genome to produce estimated counts.319 Treg expression values were processed using the Sleuth R 

Package (v0.30.0).320 

 

Cell lines and cell culture 

PY8119 cells were derived from a primary MMTV-PyMT tumor in the C57BL/6 background as described 

previously321 and were maintained in F12 media supplemented with 10% fetal bovine serum (FBS), 

10 ng ml−1 epithelial growth factor, 2 µg ml−1 hydrocortisone and 5 µg ml−1 insulin. When needed, cells were 

detached using 2.5% trypsin at P18 and resuspended in 1:1 phosphate buffer saline: Matrigel (Corning, Corning, 
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NY) mixture and injected in mammary fatpad at 100 µl volume per inoculation. MC38 colorectal cells were 

maintained in the same complete F12 media, detached using 2.5% trypsin, and resuspended in phosphate buffer 

saline and injected into mammary fatpad at 100 µl volume per inoculation. 

 

Animals 

All animals were maintained under specific pathogen-free conditions according to the IACUC guidelines. We 

purchased mouse sperm carrying the Cd177 deletion allele from the UC Davis KOMP Repository and sent it 

to Jackson Laboratories for in vitro fertilization. Seven mice were obtained with 3 carrying a heterozygous 

deletion of Cd177. Mice were backcrossed to C57BL/6 for 6 generations. Genotyping of the Cd177-KO mice 

was performed through standard PCR procedures. More information on the development and characteristics 

of the Cd177-KO mouse is available in our previous publication.312 

 

Tissue collection and T cell suppression assay 

Fresh human breast cancer and renal cancer tumor samples were collected from patients undergoing surgical 

resection after informed consent, detailed above. Breast tumor samples were supplied de-identified by the 

Tissue Procurement Core at the University of Iowa Hospitals and Clinics and were histologically characterized 

by the Department of Pathology at the University of Iowa according to immunohistochemical ER, PR and 

HER2 biomarker staining. De-identified blood samples from healthy donors were provided by the blood bank 

at the University of Iowa Hospitals and Clinics. For renal cancer patients, de-identified matching blood samples 

were provided by the Genito-Urologic Molecular Epidemiology Resource at the Holden Comprehensive 

Cancer Center, University of Iowa Hospitals and Clinics. Human peripheral blood mononuclear cells (PBMCs) 

were isolated from whole blood using Ficoll Plaque (GE Healthcare Biosciences, Pittsburgh, PA) density 

gradient centrifugation or SepMate Tubes (StemCell Technologies).  

 

Fresh tissues were directly distributed to the research laboratories after surgery, followed by enzymatic 

digestion and physical dissociation using gentleMACS (Miltenyi, Bergisch Gladbach, Germany) as per 

manufacturer’s instruction. Cell suspensions were filtered through 100-µm cell strainer, magnetically enriched 

using anti-CD45 positive selection (Miltenyi) for tumor-infiltrating leukocytes, and immediately frozen using 

FBS with 5% DMSO. Breast cancer samples were used fresh or frozen without CD45 enrichment.  

 

For in vitro suppression assay, naive CD4+ T cells were isolated from PBMC using the human naïve CD4+ T 

cell isolation kit II (Miltenyi, 130-094-131). Tumor-infiltrating Tregs were labeled with anti-CD45, anti-CD4, 

anti-CD25, and anti-CD177 antibodies and flow-sorted and combined from 3 human breast cancer 

specimens to get enough number of cells, CD45+CD4+CD25+ T cells were used as total tumor-infiltrating 

Tregs, in addition to further separation of CD177+ or CD177- tumor-infiltrating Tregs. Naïve CD4+ T cells 
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and tumor-infiltrating Tregs were co-cultured at the indicated ratios (2:1, 4:1, or 8:1) on 96-well flat-bottom 

plates in RPMI1640 supplemented with 10% fetal bovine serum (FBS), 10 mM HEPES, 2x10-5 M 2-

mercaptoethanol for 96 hr. Naïve CD4+ T cells were labeled with CFSE and stimulated by anti-CD3/28 

dynabeads (Thermo Fisher Scientific) and 10ng/ml IL-2 (R & D), following with flow cytometry to 

determine T cell proliferation indicated by CFSE dilution 

 

Tumor-infiltrating lymphocyte isolation  

For tissues used for flow cytometry staining, freshly resected tumor specimens were manually diced into 1mm 

pieces, followed by digestion with collagenase IV (Sigma) 1 mg/ml solution in 2% FBS in RPMI media at 1 ml 

per 0.1 g tissue for 1.5 hours at 37°C in a shaker incubator at 100 rpm. Tumor homogenates were passed 

through a 100-µm cell strainer and stained immediately or frozen in 5% DMSO in FBS for future use.  

 

Flow cytometry and antibody staining 

Multicolor phenotypic panels were established using different combinations of fluorescently tagged anti-CD45 

(H130), CD3 (HIT3a), CD4 (OKT4), CD25 (M-A251), CD27 (O323), CD127 (A019D5), CCR8 (433H), PD-

1 (EH12.2H7), CTLA-4 (BN13), FOXP3 (206D), and CD177 (MEM-166). Cells were stained using standard 

immunofluorescent staining protocol and run on flow cytometry either as live cells or fixed in 4% 

paraformaldehyde. Antibodies were purchased from Biolegend, Molecular probes, BD Biosciences and 

eBioscience. Flow cytometric data was acquired on a 4-laser, 19-parameter BD LSR II and data were analyzed 

using FlowJo software (TreeStar, Ashland, OR). For experiments using frozen samples, cells were thawed and 

suspended in RPMI supplanted with 10% FBS and incubated for 1.5 h at 37oC, 5% CO2 prior to staining. Tregs 

were identified as CD3+CD4+FOXP3+ or CD3+CD4+CD25+CD127low.304  

 

Signature development and evaluation 

Feature selection was performed for three sets of genes: 1) 143 differentially-expressed genes between tumor-

infiltrating Tregs and peripheral-blood Tregs shared between ccRCC and HCC, 2) 86 genes differentially 

expressed in the second cell fate, and 3) 222 genes differentially expressed in the first cell fate. For each set of 

feature-selected genes, support vector machines (SVMs) were trained to predict overall survival using the 

e1071 (v1.7-0) R package. The 538 patients in the KIRC dataset were randomly divided into training (N=266) 

and testing (N=267) cohorts. SVMs were trained to discriminate overall survival status with linear kernels, 

and the cost-parameter was selected via cross-validation. Kaplan-Meyer curves were constructed with the 

survival (v2.42.6) and survminer (v0.4.3) R packages. The cox proportion hazards regression model within the 

survival package was used to compute the hazard ratios between good-outcome and poor-outcome prediction 

groups.  
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Results 

 
Figure 13. Single-cell sequencing and isolation of Tregs. A. tSNE projection of immune cells from three ccRCC patients with 
normal peripheral blood cells (n=13433) and tumor-infiltrating cells (n=12,239). Treg population (blue) was isolated and separated as 
tumor-infiltrating (orange) versus peripheral-blood Tregs (grey). B. tSNE projection with highlighted expression of Treg markers, 
FOXP3 and IL2RA (CD25). C. Differential gene expression analysis using the log2-fold change expression versus the difference in the 
percent of cell expressing the gene comparing tumor-infiltrating minus peripheral-blood Tregs (Δ percentage difference) Genes 
labeled have log2-fold change > 1, Δ percentage difference > 20% and adjusted P-value from Wilcoxon rank sum test < 0.05. D. Top 
eight upregulated genes by log2-fold change in tumor-infiltrating Tregs with adjusted P-value < 0.05. E. Top eight downregulated 
genes by log2-fold change in tumor-infiltrating Tregs with adjusted P-value < 0.05. F. Comparison of differential genes in tumor-
infiltrating Tregs in ccRCC (orange) and HCC (green) compared to peripheral-blood Tregs. Significant genes were defined as log2-
fold change > 1 or < -1 with adjusted P-values < 0.05. G. Relative mRNA levels of Treg markers that were consistently increased in 
both ccRCC- and HCC-infiltrating Tregs, Log2-fold change > 1 and adjusted P-values < 0.05. 
 

Single-Cell RNA sequencing in Tregs from ccRCC patients 

A total of 25,672 immune cells across the three ccRCC were isolated and passed quality control, with 13,433 

peripheral-blood and 12,239 tumor-infiltrating cells. We isolated Tregs using the expression of the markers 

FOXP3 and CD25 (IL2RA) in addition to the cluster identity from the t-distributed stochastic neighbor 

embedding (tSNE) method (Figure 13A,B). In total, we recovered single-cell-level expression profiles of 160 

peripheral-blood Tregs and 574 tumor-infiltrating Tregs. In order to identify differentially-expressed genes and 

potential markers of tumor-infiltrating Tregs, we performed the Wilcoxon rank sum test comparing tumor-

infiltrating versus peripheral-blood Tregs. In addition to using log2-fold change, we also examined the difference 

in the percentage of cells that express the specific gene in each category (Δ Percentage Difference), allowing 

for more specific evaluation of tumor-infiltrating Treg markers (Figure 13C). These tumor-infiltrating-specific 
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genes with a log2-fold change ≥ 1, adjusted P < 0.05 and a Δ Percentage Difference > 20% are labeled in 

Figure 13C. The only two genes with 0% expression in peripheral-blood Tregs were NR4A1 (tumor-infiltrating 

percentage = 51.4%) and CD177 (tumor-infiltrating percentage = 20.2%) (Figure 13C). A summary of the top 

eight genes by log2-fold change which are upregulated (Figure 13D) and downregulated (Figure 13E) in 

tumor-infiltrating Tregs are shown with the corresponding adjusted P-value. 

 
Figure 14. Processing of secondary tumor-infiltrating Treg data sets. A. tSNE projection of immune cells from five HCC patients 
with normal peripheral blood cells and tumor-infiltrating T cells. B. tSNE projection with highlighted expression of Treg markers, 
FOXP3 and IL2RA (CD25). C. Differential gene expression analysis using the log2-fold change expression versus the difference in the 
percent of cells expressing the gene comparing tumor-infiltrating minus peripheral-blood Tregs (Δ Percentage Difference) Genes 
labeled have log2-fold change > 1, Δ Percentage Difference > 15% and adjusted P-value from Wilcoxon rank sum test < 0.05. D. 
Venn diagram of the overlap in differentially-expressed tumor-infiltrating Tregs compared to peripheral-blood Tregs in breast 
carcinoma (GSE89225), colorectal adenocarcinoma (PRJEB11844), and non-small cell lung squamous carcinoma (PRJEB11844). E. 
Heatmap differential genes shared between the three datasets with immune-related genes labeled. Genes are displayed in log2-fold 
change (FC) comparing tumor-infiltrating Tregs versus peripheral-blood Tregs with FDR q-values <0.05.   

In order to compare our differential gene expression results for tumor-infiltrating Tregs, we used a recently-

published single-cell profiling of T cells in HCC.309 This data set is comprised of flow-sorted CD4+, CD8+, and 

Tregs from 5 HCC patients with cells isolated from peripheral blood, normal liver parenchyma, transitional 

zone near the tumor, and tumor-infiltrating T cells. A total of 4,922 T lymphocytes passed filtering and quality 

control, with 1,552 flow-sorted Tregs. After clustering and Treg identification (Figure 14A,B), we performed 

the same Wilcoxon rank sum test for differential gene expression comparing tumor-infiltrating Tregs versus 

peripheral blood Tregs (Figure 14C). Defining differential genes as adjusted P-value < 0.05 and log2-fold 

change < -1 or > 1, we found a total of 273 genes in our ccRCC-infiltrating Tregs compared to 467 genes in 

the HCC-infiltrating Tregs (Figure 13F). A total of 143 differential genes overlapped between Tregs infiltrating 
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into HCC and ccRCC tumors. Of note, we corroborated several previous reports on upregulation of CCR8, 

LAYN, and MAGEH1 in tumor-infiltrating Tregs in both data sets (Figure 13F,G).307–309 In addition, we 

observed increase expression of other Treg markers, including CTLA4, ICOS, TNFRSF18, TNFRSF4, and 

TNFRSF9 (Figure 13F,G). The gene with the highest average log2-fold change in ccRCC (log2-fold change = 

4.86) and HCC (log2-fold change = 4.55) tumor-infiltrating Tregs was CD177. A similar upregulation Treg-

related genes, including CD177, was also seen in RNA-sequencing data sets derived from pooled tumor-

infiltrating Tregs versus peripheral-blood controls in breast, colorectal, and non-small cell lung cancers (Figure 

14D,E). 

 

Treg heterogeneity indicates the transcriptional bifurcation of tumor-infiltrating Tregs 

 
Figure 15. Transcriptional Heterogeneity in single-cell sequencing of ccRCC Tregs. A. Trajectory manifold of Tregs from the 
ccRCC using the Monocle 2 algorithm, solid and dotted line represent distinct cell trajectories/fates defined by single-cell expression 
profiles. B. Pseudo-time projections of transcriptional changes in immune genes based on the manifold. Significance based on 
differential testing based on the site of origin of Tregs was used to generate pseudo-time and adjusted for multiple comparisons. C. 
Expression heatmap of significant (Q < 1e-6) genes based on branch expression analysis comparing the two tumor-infiltrating cell 
fates and were used in the ordering of the pseudo-time variable. D. Cell trajectory projections of transcriptional changes in immune 
genes based on the manifold. Significance based on differential testing between the first and second cell fates of tumor-infiltrating 
Tregs. �̅� denotes the scaled mean of each pole of the manifold. E. Gene signature analysis of the poles of the trajectory manifold. P-
value based on one-way ANOVA with individual comparisons corrected for multiple hypothesis testing using the Tukey HSD 
method. * P < 0.05, ** P <0.01, *** P <0.001, **** P < 0.0001. F. Results of the cell cycle regression analysis of single cells for each 
cell fate using the Seurat R package. 
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Unlike these previous genomic studies that rely on pooled tumor-infiltrating in comparison to peripheral-blood 

Tregs, we also were able to investigate the dynamic transcriptomic processes of the Tregs at a single-cell level 

(Figure 15A). Using the machine-learning reverse graph embedding for dimensional reduction available in the 

Monocle 2 algorithm, we constructed a manifold using of the tumor-infiltrating and peripheral blood Tregs in 

the ccRCC data set (Figure 15A). This technique orders the single cells by expression profiles to represent 

distinct cellular fates or biological processes. Unlike differential gene expression, the ordinal construction of 

the manifold creates a pseudo-time variable that allows us to investigate the relative expression of genes in 

Tregs during the infiltration process (Figure 15A,B). Using the pseudo-time created by the reverse graph 

ordering, we also found a number of genes with significant role in the manifold ordering, including many 

previously identified in the differential expression analysis that are increasing in tumor-infiltrating by predicted 

pseudo-time projection (Figure 15B). In addition, we observed a significant increase in chemokine, CCL20 

and CCL4, over purported pseudo-time (Figure 15B). These chemokines are reported to play a role in the 

trafficking of Tregs to sites of antigen presentation.322 

 

Next, to understand the branching structure of the manifold, we performed branched expression analysis 

modeling using the pseudo-time variable in the reduced model (Figure 15C). Commonly-associated markers 

of immune regulation and suppression had increased expression in tumor-infiltrating Tregs of Cell Fate #1 

compared to the Tregs of Cell Fate #2 (Figure 15C). In contrast, the Tregs of Cell Fate #2 had maintenance 

of ribosomal-associated gene expression (Figure 15C). Using the differential gene analysis between the 

branches, we were able to see three distinct trends in gene expression between the tumor-infiltrating Tregs: 

non-specific increase between the two tumor-infiltrating Treg fates, like CCR8 and CTLA4; increased in the 

Cell Fate #1, like CD177 and TNFRSF4; and increased in the Cell Fate #2, like CXCR4 and EGR1 (Figure 

15D). To investigate the potential functional difference between the cell fates, we performed gene signature 

analysis comparing single-cell gene expression of the poles of the manifold (Figure 15E). In both tumor-

infiltrating Tregs cell fates, we observed a significant reduction in the naïve T cell signatures and an increase in 

T cell exhaustion signatures compared to peripheral-blood ccRCC Tregs (Figure 15E, upper row). The gene 

signature for cytotoxicity was significantly higher in Tregs of the first cell fate compared to peripheral blood or 

the second cell fate Tregs (Figure 15D). Similarly, we found an increase in signature scores for cell cycle in 

Tregs of the Cell Fate #1 (Figure 15E). Performing a regression-based analysis of cell-cycle-related genes, we 

assigned cell phases to each Treg, finding an increased percentage of G2M phase Tregs in in the first cell fate 

(Figure 15F). In addition to the single-cell RNA sequencing, we also sequenced the VDJ regions of the T-cell 

receptor (TCR). Examining the shared clonotypes, the matching TRA and TRB chains of the TCR across Tregs, 

we found nearly 0 shared sequences in the peripheral blood of each ccRCC (Figure 16A, upper panel), with 

modest increases in repeated clonotypes in tumor-infiltrating Tregs (Figure 16A, lower panel). Moving from 

peripheral-blood to tumor-infiltrating Tregs there is a significant increase in the percentage of clones, both 
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shared between two Tregs (Figure 15B) and three or more Tregs (Figure 16C). Combining the peripheral-

blood and tumor-infiltrating Tregs by patient identity to the transcriptional manifold, we observed a significant 

increase in expanded clonotypes in the first tumor-infiltrating Treg cell fate (Figure 16D). 

 

 
Figure 16. Clonotype analysis of ccRCC-infiltrating and peripheral-blood Tregs. A. Percentages of assigned clonotypes by patients 
in peripheral-blood (PB, upper panel) and tumor-infiltrating Tregs (TM, lower panel). B. Relative increase in clonotypes with two 
copies in the same patient comparing peripheral-blood (grey) to tumor-infiltrating (orange). Significance testing utilized T test with 
Welch’s correction C. Relative increase in clonotypes with three or more copies in the same patient comparing peripheral-blood (grey) 
to tumor-infiltrating (orange) Tregs. Significance testing utilized T test with Welch’s correction. D. Cell trajectory projections of 
shared clonotype percentages by cell fate, combining the peripheral-blood and tumor-infiltrating clonotypes of a single patient. 
Significance based on χ2 testing. 
 

In order to corroborate our findings, we utilized the HCC single-cell dataset, finding a similar bifurcated 

architecture in the cell trajectory manifold of Tregs (Figure 17A). In addition, we noted a similar increase in 

immune modulatory genes were seen across pseudo-time in HCC-infiltrating Tregs (Figure 17B), however the 

contrast in expression values between tumor-infiltrating versus peripheral-blood Tregs was less for CCR8, 

CTLA4, DUSP4, FOXP3, IKZF2, MAGEH1, TIGIT, and TNFRSF18 (Figure 17B). Within HCC-infiltrating 

Tregs, CCR8 and CTLA4 failed to differentiate between the two manifold-based Treg cell fates while CD177 

and TNFRFS4 was still associated with Tregs of the first cell fate (Figure 14C). Additional markers specific 

for Tregs in Cell Fate #1 included: HSPB1, CCL20, IFNG, and HLA-DRA (Figure 17C) also seen in the renal-

infiltrating Tregs of the first cell fate (Figure 15C). Similar to our ccRCC Tregs, we found a reduction in naïve 

T cell signatures and an increase in exhaustion gene signatures in the tumor-infiltrating populations (Figure 

17D). Interestingly, the Tregs of the second cell fate appeared to have higher cytotoxicity and cell cycle 

signatures compared to peripheral blood Tregs and Tregs from the first cell fate (Figure 17D,E). This may be 

a result of creating the cell trajectory manifold from Tregs from different regions of the liver, in which may 

vary in expression and proliferation. In our combined examination of heterogeneity in tumor-infiltrating Tregs, 

we observed increased expression of CD177 in ccRCC-infiltrating Tregs compared to peripheral blood Tregs 
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(Figure 13G) and the specificity towards a suppressive cell fate (Figure 14D and Figure 17C) leading us to 

further investigate the functional impact of CD177+ Tregs. 

 
Figure 17. Transcriptional heterogeneity in single-cell sequencing of HCC Tregs. A. Trajectory manifold of Tregs from the HCC 
using the Monocle 2 algorithm. B. Pseudo-time projections of transcriptional changes in immune genes based on the manifold. C. 
Cell trajectory projections of transcriptional changes in immune genes based on the manifold. �̅� denotes the scaled mean of each pole 
of the manifold. D. Gene signature analysis of the poles of the trajectory manifold. *** P <0.001, **** P < 0.0001. E. Results of the 
cell cycle regression analysis of single cells for each cell fate using the Seurat R package. 
 
CD177 defines a subset of suppressive tumor-infiltrating Tregs 

Our interest in CD177 is long standing and we have previously shown that CD177 plays a role in neutrophil 

viability using a genetic mouse model.312 To corroborate our single-cell RNA findings of tumor-infiltrating Treg 

expression of CD77, we developed immunohistochemical (IHC) staining procedure for CD177 (Figure 18A). 

In general, we observed a paucity of staining for CD177 in tumor cells, but high levels of CD177 in tumor-

infiltrating lymphocytes (TIL, Figure 18A). In collaboration with the Comparative Pathology Core in the 

Department of Pathology we performed dual IHC staining for FoxP3 (brown) and CD177 (red) and 

demonstrated a subset of CD177+ FoxP3+ T cells (Figure 18B, orange arrow). In addition to IHC, we 

performed flow cytometry on TILs in a number of cancer types find the CD177+ infiltrating population to be 

seen exclusively in CD4+ T cells (Figure 3C). Staining on CD177+ TILs demonstrated that majority of CD177+ 

cells were Tregs as identified by flow cytometry (Figure 18D, CD3+CD4+CD25+CD127low) as well as by 

intracellular FoxP3 staining (Figure 18E, CD3+CD4+FoxP3+).  
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Figure 18. CD177+ tumor-infiltrating lymphocytes are comprised of Tregs. A. Human breast cancer, lung adenocarcinoma, and 
lymph node metastasis IHC for CD177 (brown) expression. B. Representative dual IHC staining for CD177 (red) and FoxP3 (brown) 
in breast carcinoma section. Dual-positive cells are indicated with orange arrows and FoxP3-positive cells are indicated by black 
arrows. C. Representative surface expression of CD177, as measured by flow cytometry, by CD4+ and CD8+ TILs isolated from 
different human cancer samples as well as PBMCs from a healthy individual. D,E. Representative flow cytometry data gating on Tregs 
identified as CD25+CD127- (D) or FoxP3+ (E) and isolated from TILs in breast cancer tissue or PBMCs. 

Within the suppressive Cell Fate #1 Treg subset, we observed a significant increase in the number of CD177+ 

Tregs (Figure 19A,B). In order to support our single-cell RNA findings of TI Treg specificity for CD177, we 

performed flow cytometry on TILs. CD177+ Tregs consisted of 0 to 56.3% (median = 22.4%) of total Tregs 

in breast cancer and 6.8 to 48.1% (median = 16.8%) in renal cancer (Figure 19C), mirroring the roughly 15-

25% of tumor-infiltrating Tregs in both the ccRCC and HCC datasets. There were small percentages of 

conventional CD4+ T cells (Tconv) expressing CD177 with a median of 0.31% in breast and 0.72% in renal 

tumors (Figure 19C). We observed that CD177+ Tregs had larger pool of cells expressing PD-1, CTLA-4 and 

CCR8 (27.5%, 33.3%, and 75% respectively) when compared to CD177- Tregs (6.2%, 0%, and 40% 

respectively), suggesting an active and suppressive phenotype (Figure 19D). CD27, T cell activation marker, 

exhibited similar pattern for CD177+ Treg or Tconv cells (52.7% vs 59.5%), but was completely lost in CD177- 

Tregs (Figure 19D). We were also able to isolate a small fraction of CD4+ conventional T cells (Tconv) with 

CD177 and the analysis of the markers, with the exception of CD27, did not show different patterns compared 

to CD177- Tconv cells (Figure 19D), indicative of a Treg-specific phenotype related to CD177 expression.  
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Figure 19. CD177+ Tregs are a suppressive subset of Tregs. A. Trajectory manifold of Tregs from the ccRCC Tregs with the number 
of CD177+ and CD177- Tregs for each respective cell fate. Significance based on χ2 testing comparing the three poles of the manifold. 
B. Proportional distribution of CD177+ Tregs by cell fate across the manifold. C. Percentages of CD177+ cells relative to different 
CD4+ TILs in breast cancer (n=13-18) and  in renal cancer (n=8). Data are presented as mean ± SD with median values presented in 
the figure. D. Representative flow cytometry data for select marker expression by CD177+ or CD177- Tregs 
(CD3+CD4+CD25+CD127low/FoxP3+) or Tconv (D3+CD4+CD25-/FoxP3-) isolated from breast cancers. n=2-3. E. Tumor-infiltrating 
Treg and T effector cells were isolated from breast tumors. Tregs were further sorted by CD177 expression and incubated with effector 
cells at indicated ratios. F. Py8199 tumor growth is significantly reduced in Cd177-KO mice compared to WT, P< 0.0001 (two-way 
ANOVA) in mice challenged with 500 cells per inoculation, n=10 bilateral tumors. Numbers in parenthesis equates to the number of 
nonrejected tumor challenge/total. G. MC38 tumor growth is significantly reduced in Cd177-KO mice compared to WT, P=0.0005 
(two-way ANOVA) in mice challenged with 50,000 cells per inoculation. Numbers in parenthesis equates to the number of nonrejected 
tumor challenge/total. Data are presented as mean ± SEM. In vivo tumor modeling was performed by Dr. Ryan Kolb. 
 
In order to confirm the immunosuppressive property of CD177+ Tregs, we performed an in vitro 

immunosuppression assay (Figure 19E). Interestingly, when non-sorted Tregs (include CD177+/- Tregs in their 

naturally occurring ratios) were employed, total Tregs were more suppressive than purified CD177- Tregs 

despite the fact that the immunosuppressant effect of CD177+ Treg was diluted by the presence of CD177- 

Tregs (Figure 19E). The scarcity of CD177+ tumor infiltrating Tregs made it challenging to repeat these 

experiments. However, given that the experiments were carried out using Tregs pooled from 3 individual breast 

cancer tissues, results can be considered biologically representative. We used Cd177 KO mice and their WT 

littermate controls to verify the suppressive phenotype of CD177+ Treg. After titrating injections to identify 

optimal cell numbers to facilitate immune-based tumor control of Py8119 cells, a triple-negative breast cancer 

model, we settled on 5x103 cells for injection. We found a clear phenotype in regard to tumor growth in KO 

versus WT mice, where KO mice rejected tumor inoculation (5 out of 10 total compared to 1 out of 10 WT) 
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and showed significantly slower tumor growth (P<0.0001) (Figure 19F) pertaining to immune-mediated tumor 

clearance at such low inoculation dose. The same increase in tumor rejection (4 of 7) and slower tumor growth 

(P=0.0005) was seen in the syngeneic grafts of MC38 colorectal cells in Cd177-KO versus WT controls (Figure 

19G).  

 

Superior prognostic ability of suppressive Treg subset gene signature 

 
Figure 20. Improved prognostic prediction associated with suppressive Tregs. A. Schematic of signature development using feature 
selection from: 1) 143 differential genes of tumor-infiltrating Treg in ccRCC and HCC, 2) 86 genes differentially expressed in Cell Fate 
#2, and 3) 222 genes differentially expressed in Cell Fate #1 using the Kidney Renal Clear Cell (ccRCC, n=538) dataset from the TCGA. 
B. Kaplan-Meier curve for overall survival in ccRCC using the TI gene signature. C. Kaplan-Meier curve for overall survival in ccRCC 
using the Cell Fate #1 Treg gene signature. P-value based on log-rank test and hazard ratio (HR) based on Cox proportional hazard 
regression. D. Kaplan-Meier curve for overall survival in ccRCC using Cell Fate #2 Treg gene signature. E. Overall survival prediction 
with Cox proportional hazard ratio and -log10(P-value) based on log-rank testing across the 24 largest TCGA datasets using the tumor-
infiltrating Treg signature. F. Overall survival prediction with Cox proportional hazard ratio and -log10(P-value) based on log-rank 
testing across the 24 largest TCGA datasets using the Cell Fate #1 signature. G. Prognostic prediction for single-cell Treg signatures 
compared to other proposed signatures for TI Tregs. Hazard ratios, 95% confidence intervals, and P-values derived from Cox 
proportional hazard regression modeling. H. Relative mRNA violin plots of the Cell Fate #1 signature based on the transcriptional 
trajectory state across the 160 PB Tregs and 574 TI Tregs. 
 

As our data suggests the transcriptional and functional difference in a suppressive subset of tumor-infiltrating 

Tregs across several cancers, we predicted the gene signature development from single-cell data would 
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provide improved prognostic ability. We performed feature selection to identify gene signatures on: 1) 143 

differential genes of tumor-infiltrating Treg in ccRCC and HCC, 2) 86 genes differentially expressed in the 

Cell Fate #2, and 3) 222 genes differentially expressed in the Cell Fate #1 using the Kidney Renal Clear Cell 

(ccRCC, n=538) dataset from the TCGA (Figure 20A). Using 50% (n=269) of the KIRC samples as a 

training set, we utilized supervised machine learning using a linear support vector machine model. After 

evaluating polynomial support vector machines, k-nearest neighbors, boosted tree classifications, and 

bootstrap aggregating classifications supervised machine learning models, we selected a linear support vector 

machine because the method had the least issues in the overfitting of survival data. Applying these signatures 

to the remaining 50% of KIRC  dataset, we show the tumor-infiltrating signature (Figure 20B) and the Cell 

Fate #1 signature (Figure 20C) could discriminate between patients with good and poor prognosis, but not 

the Cell Fate #2 signature (Figure 20D). Despite both the tumor-infiltrating signature and Cell Fate #1 

signature significantly predicting poor overall survival in roughly 20% patients, the Cell Fate #1 signature had 

superior ability to discriminate prognostic groups with a Cox hazard ratio of 3.22 compared to 1.91(Figure 

20B,C). 

 

The superior discrimination of the Cell Fate #1 Treg signature compared to the tumor-infiltrating signature 

was not isolated to ccRCC. We applied the signatures across the 24 largest TCGA datasets, finding the tumor-

infiltrating signature significantly separating prognostic groups in 7 cancer datasets with P-values ranging from 

0.006 to 0.038 and Cox hazard ratios ranging from 1.39 to 3.37 (Figure 20E). In contrast, the Cell Fate #1 

Treg signature discriminating prognostic groups in 8 cancer types, with P-values ranging from 1.07e-7 to 0.043 

and higher Cox hazard ratios of 1.4 to 5.5 (Figure 20F). The Cell Fate #2 Treg signature failed to discriminate 

groups based on overall survival across all of the 24 TCGA datasets (data not shown). Both the Cell Fate #1 

Treg signature and the tumor-infiltrating Treg signature separated prognostic groups in checkpoint-inhibitor 

responsive melanoma (SKCM) and lung adenocarcinoma (LUAD), as well as renal papillary cell carcinoma 

(KIRP) and liver hepatocellular carcinoma (LIHC) (Figure 20E,F). In addition, Cell Fate #1 Treg signature 

separated prognostic groups in sarcoma (SARC) , low-grade glioma (LGG) and colon adenocarcinoma 

(COAD), the latter of which has had reports of Treg infiltration as being good prognostic indicators.274 Within 

the KIRC dataset, we compared previously identified Treg signatures to our single-cell signatures, 

demonstrating superior prognostic ability in univariate Cox proportional hazard regression analysis (Figure 

20G), In addition to investigating the prognostic ability of the Cell Fate #1 Treg signature, we also show that 

the signature is not exclusive to the first cell fate, but rather has higher mean expression and range of the seven 

genes selected: SHMT2, CCL22, ITM2A, BANF1, PTTG1, RHOB, and NDUFC2 (Figure 20H).  
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Discussion 

Due to the immunosuppressive role of Tregs in peripheral tolerance, the targeting for Tregs for therapy is a 

double-edged sword. While the attenuation of the Treg-mediated suppressive activity increases the anti-tumor 

immune response, Treg dysfunction is associated with autoimmune and inflammatory diseases. For example, 

CTLA-4 is constitutively expressed on Tregs and acts as a primary mechanism of immune suppression by Tregs, 

acting to block co-stimulation of T effector cells.68 The anti-CTLA-4 antibody, ipilimumab, inhibits Treg 

function by abolishing CTLA-4-mediated suppressive signaling and depletes Tregs in the tumor 

microenvironment.297–299 However, the whole body abrogation of Treg function leads to substantial side effect 

profile, including autoimmune and inflammatory conditions, like colitis, which can occur in over 50% of 

patients.259,296 Thus, refining biomarkers for tumor-infiltrating Tregs is vital for the development of better 

targeted immunotherapy. 

 

From our large single-cell RNA-sequencing cohort, we isolated 160 peripheral-blood Tregs and 574 tumor-

infiltrating Tregs, representing one of the largest collections of expression profiles available for paired Treg 

samples. We expanded our analysis to include flow-sorted Tregs derived from HCC tumors with 264 peripheral-

blood and 634 tumor-infiltrating Tregs.309 We found a common differential signature of 143 genes comparing 

tumor-infiltrating versus peripheral-blood Tregs (Figure 13F). The overlapping genes included common Treg 

markers, like CTLA4, ICOS, TNFRSF4, TNFRSF9, TNFRSF18, as well as previously identified tumor-

infiltrating Treg markers, like CCR8, LAYN, and MAGEH1 (Figure 13G).296,307–309 However, among the most 

consistently elevated genes in both single-cell RNA sequencing (Figure 13G) and pooled RNA sequencing 

(Figure 14E) of tumor-infiltrating Tregs was CD177. 

 

CD177 has almost exclusively been studied in neutrophils, where it has been suggested to play a role in 

transendothelial migration, cell viability, and bactericidal activities.312,323 Apart from a minor point in a recent 

paper on tumor-infiltrating Tregs in breast cancer in which the authors found that CD177 was expressed on a 

small subset of tumor-infiltrating Tregs308 and a paper showing that its expression is a good prognosis marker 

in CRC,314 little is known of CD177 expression and function outside of neutrophils. Across single-cell 

sequencing and flow cytometry, we observed CD177 in 15-25% of tumor-infiltrating Tregs in various (Figure 

13C, Figure 14C, and Figure 19A,C). Analysis of transcriptional heterogeneity of tumor-infiltrating Tregs 

revealed CD177 closely associated with a more suppressive cell fate with elevated immune suppression markers 

(Figure 15C). Flow cytometry also indicated that the CD177+ Treg population has higher number of cells with 

checkpoint proteins, CTLA-4 and PD-1, as well as suppressive markers CCR8 and CD27, compared to the 

CD177- population further supporting that CD177+ Tregs are more suppressive than CD177- Tregs (Figure 

19D). This increased level of suppression mediated by CD177+ Tregs was overserved in in vitro suppression 

assays (Figure 19E) and in vivo tumor models (Figure 19F,G). Taken together, our work suggests CD177 as a 
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specific marker for a suppressive subset of Tregs. However, the specific function of CD177 in Tregs, how 

CD177 expression in Tregs is regulated, and whether CD177 can be used as a target for immunotherapy 

warrants further investigation. 

 
Identifying specific markers and function of different tumor-infiltrating Treg subsets is important in both 

understanding the role of Tregs in immunotherapy, predicting prognosis or response of a patient to 

immunotherapy, and the development on new therapies. In the context of prognosis, FOXP3 alone has had 

mixed results in the ability predict overall survival for patients.274,302,303 More recently, two analyses of RNA-

sequencing of tumor-infiltrating Tregs reported the use of the ratios, CCR8/FOXP3 for breast cancer and 

CCR8/CD3G for lung and colorectal cancers, had modest predictive value in terms of overall survival.307,308 

The adequacy of single or double gene approach to survival prediction does not account for the observed 

heterogeneity within tumor-infiltrating Tregs (Figure 16). Similar to algorithms developed to quantify the 

immune contribution of bulk RNA sequencing,267 we utilized linear support vector machines to develop a 

signature. The cell fate #1 Treg signature that predicted overall survival in 8 cancer types, in immunogenic 

cancers, like KIRC/ccRCC, SKCM and LUAD (Figure 20F). Surprisingly, the Cell Fate #1 signature 

discriminated prognostic groups in COAD, a cancer type with previous reports of Treg infiltration being a 

marker of good prognosis.274 Although the Cell Fate #1 signature did not include CD177, likely a result of 

epithelial expression of CD177 (Figure 18A) and the tumor-intrinsic role of CD177 as a tumor suppressor 

(Kolb, R., and Kluz, P. et al 2018, publication forthcoming), it did discriminate between transcriptional states 

based on our manifold (Figure 20G,H).  

 
In summary, the Treg tumor infiltrate quantity and quality, including the presence of the suppressive Treg 

subset, are key to improved therapeutic and prognostic outcomes. Our study highlights the potential of 

single-cell genomics to improve the understanding of the tumor microenvironment and identify new 

targets of Treg-based immunotherapy. This data also provides a unique resource of transcriptome data 

from ccRCC peripheral-blood and tumor-infiltrating immune cells.  
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CHAPTER 4 
SINGLE-CELL PROFILING OF CUTANEOUS T-CELL LYMPHOMA REVEALS UNDERLYING 

HETEROGENEITY ASSOCIATED WITH DISEASE PROGRESSION 
 

Rationale 

Cutaneous T cell lymphomas (CTCLs) are a group of heterogenous T cell neoplasms with skin involvement. 

Two predominant types of CTCL include mycosis fungoides (MF) and Sézary syndrome (SS), both of which 

are thought to be derived from mature skin-homing CD4+ T cells.324,325 Given this commonality and their often 

overlapping clinicopathologic features, MF and SS had historically been regarded as closely related entities on 

a spectrum; however, recent elucidation of distinct cells of origin326 has favored MF and SS to represent distinct 

clinical entities.327–329 SS refers to a rare form of CTCL characterized by circulating malignant cells with 

widespread skin involvement and possesses a poor 5-year survival rate.324,330 In contrast, MF refers to a 

substantially more common CTCL with a skin-predominant, and usually a skin-limited presentation. MF most 

often has an indolent course, with a 5-year survival of 70-80%328,330; however, a subset of patients exhibit a 

progressive course such that malignant cells may be identified in the circulation, lymph nodes, and viscera. 

Treatments for advanced stage MF and SS ultimately become ineffective, contributing to the morbidity and 

mortality of this patient population. Methods to identify those patients who will progress to advanced and 

widespread disease may facilitate optimal transition from skin-directed therapies to more aggressive treatment, 

but such methods have not yet been established. 

 

Despite a number of high-quality computational inquiries into the genomic makeup of CTCL331–335, the 

development of differentiated T cells phenotypes and their relationship to disease pathogenesis represents a 

knowledge gap in the understanding of CTCL. In particular, the contribution of Treg-like cells to the malignant 

population in MF/SS has been controversial, with heterogeneous and sometimes conflicting results.336–340 

Heterogeneity within SS has been suggested by a recent targeted gene sequencing of single cells.341 A deeper 

understanding of differences within the clonal malignant population in CTCL may yield insights into more 

effective treatment regimens and strategies. 

 

Here, we use single-cell RNA sequencing and single-cell V-D-J sequencing to examine SS at a previously 

unrealized transcriptomic resolution by pairing isolated SS cells with matched normal CD4+ T cells. Using this 

unique dataset, we investigated the degree, as well as trajectory, of heterogenous transcriptional profiles within 

the malignant cell population to identify novel markers of SS that may aid in the detection, diagnosis, and 

staging of CTCL. We further validate the power of our methodology by applying our findings to a publicly 

available dataset consisting of a large cohort of CTCL patients and demonstrate that when used in conjunction 
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with an artificial intelligence (AI)-based approach, transcripts can be identified that distinguish early and late 

stage disease. A summary of the process and results can be found in Figure 21. 

 

 
Figure 21. Basic scheme of analysis of single-cell SS sequencing. 1. Single cell isolation, sequencing, and clustering of peripheral 
blood and SS cells. 2. Transcriptional manifold construction of malignant SS revealed a progression from Treg-like cells into central 
memory T cells. 3. Using the significant genes from pseudo-time, construction of a boosted tree classification predicted CTCL disease 
state with 79.6% accuracy. 
 

Materials and methods 

Patient recruitment 

The current study was approved by the University of Iowa Institutional Review Board and conducted under 

the Declaration of Helsinki Principles. The patient was recruited from the University of Iowa Cutaneous 

Lymphoma clinic in the Department of Dermatology. Informed written consent was received from the 

participant before inclusion in the study. 

 

Flow cytometry 

A blood draw was performed, and peripheral blood mononuclear cells (PBMCs) were isolated using a Ficoll 

gradient. Cells were labeled with fluorescent antibodies specific for CD3, CD4, CD8, CD45RA, CD45RO, 

CD5, CD7, and CD26 and flow sorted on a Becton Dickinson Aria II. 

 

Single-cell RNA sequencing 

A malignant (CD3+CD4+CD5brightSSChi) and nonmalignant CD4 (CD3+CD4+CD5intSSCint) population were 

flow sorted in parallel. T-cell receptor sequencing and 5’ gene expression sequencing was performed using the 

Chromium (10x Genomics, Pleasanton, CA) and Illumina (San Diego, CA) sequencing technologies. Amplified 

cDNA was used to construct both 5’ expression and TCR enrichment libraries. Libraries were pooled together 
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and run on sperate lanes of a 150 based-paired, paired-end, flow cell using the Illumina HiSeq 4000. Basecalls 

were converted into FASTQs using the Illumina bcl2fastq software by the University of Iowa Genomics 

Division. FASTQ files were aligned to human genome (GRCh38) using the CellRanger v2.2 pipeline as 

described by manufacturer. Single-cell immune profiling of the clonotypes of the CD4+ T cells was performed 

in conjunction with the single-cell RNA sequencing following the protocols described above.  

 

Single-cell data processing and analysis 

Initial processing of peripheral (n=4,485) and malignant (n=3,526) CD4+ T cells was performed using the 

Seurat R Package (v2.3.4).316 Individual cells were adjusted for total expression and percentage of mitochondrial 

reads. After processing, clustering was performed using the Seurat package on peripheral (n=4,436) and 

malignant (n=3,443) CD4+ T cells. Dimensional reduction to form the tSNE plot utilized the top 10 calculated 

principle components and a resolution, or granularity of the clusters, of 1.2. Cluster markers and differential 

gene expression analyses were performed using the Wilcoxon rank sum test. Single-cell immune phenotyping 

utilized the SingleR (v0.2.0) R package on mean raw count data for clusters identified in Seurat.342 Differential 

markers between peripheral and malignant CD4+ T cells utilized the percentage of cells that express the 

individual mRNA species and the average log2-fold change between the two cell populations. Cell trajectory 

and pseudo-time analysis was performed using the Monocle R package (v2.8.0) and the reverse graph 

embedding machine learning algorithm.318 Differential gene testing for the pseudo-time analysis was based on 

the previously identified malignant cell clusters and a cut-off for significance q-value < 0.01. 

 

Machine-learning gene signature analysis  

Raw TruSeq FASTQs of 152 CTCL and 29 normal/benign skin lesions were downloaded from SRP114956. 
343 Additional clinical data on patient age and disease were downloaded from the SRA repository. Files were 

pseudo-aligned with kallisto using the GRCh38 build of the human transcriptome.319 Transcript-level 

quantifications were condensed to gene-level and scaled to transcripts-per-million (TPM) values. In total, 344 

genes were sequenced and quantified across the 151 of the total 152 patients, a single patient was removed due 

to alignment issues. Quantified genes were then cross-referenced to significant (q-value < 0.05) genes identified 

in the Monocle 2 algorithm to narrow down signature candidates, with a total of 93 genes used for classification 

prediction. Boosted classification trees were constructed with the gbm (v2.1.3) package using log TPM values. 

Boosting was performed with 10,000 classification trees with a multinomial distribution; interaction depth and 

shrinkage parameters were selected via 10-fold cross validation on the training dataset. Variable importance of 

each gene was assessed by quantifying the mean decrease in the Gini index of each predictor averaged over all 

splits.  
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Results 

Differential Clustering of Malignant and Normal CD4+ T cells 

We performed parallel single-cell RNA sequencing and T-cell receptor (TCR) VDJ sequencing of sorted 

malignant CD4+ T cells paired with normal CD4+ T cells using a single cell droplet platform, as outlined in 

Figure 22A. Malignant CD4+ T cells were identified in a patient with SS by high side scatter326 as well as 

aberrantly high expression of CD5; these cells made up nearly 86% of circulating CD4+ T cells. Normal CD4+ 

T cells were sorted in parallel, with a normal side scatter profile and normal CD5 expression (Figure 22B). 

 

After single-cell RNA and TCR sequencing of the isolated CD4+ T cells, data were filtered for low-quality cells 

and normalized. Assessing the collective heterogeneity of both normal and malignant CD4+ T cells, we 

observed 12 distinct clusters based on mRNA expression (Figure 22C). Accompanying the clustering, we also 

identified the top 5-7 genes that define each cluster (Figure 22D). Of the tSNE clusters, 6 were comprised of 

normal CD4+ T cells, while 5 consisted of the malignant SS cells. Using Euclidean hierarchical clustering, we 

found the tSNE clusters were most closely related to the normal versus malignant classification (Figure 22E), 

further confirming the separation within the tSNE itself. Using the mean mRNA expression of each cluster, 

we correlated the gene expression with known marker genes, with the majority of cells of both normal and 

malignant origin correlating with CD4+ central memory T cells (Tcm, Figure 22F). Notably, the normal CD4+ 

Figure 22. Single-cell 
isolation and sequencing 
of peripheral blood and 
Sézary Syndrome cells. A. 
Schematic of the isolation, 
sequencing, and analysis of 
the single-cells. B. Flow 
cytometry gating of the 
patient sample to isolate 
peripheral blood and 
tumor cells. C. tSNE 
projection of patient 
sample with normal 
peripheral blood samples 
(n=4,436) outline in grey 
and tumorigenic CD4 cells 
(n=3,443) in orange. D. 
Unique cluster markers 
based on the Wilcoxon 
rank sum test, adjusted P-
value < 1e-50. E. 
Phylogenic tree of cluster 
identities based on mean 
mRNA values in the 
cluster with corresponding 
cluster composition. F. 
Normalized enrichment 
score of predicted immune 
cell phenotype based on 
SingleR algorithm for each 
tSNE cluster. 
 



56 
 

T cell Clusters 0 and 2 appeared to contain a naïve CD4+ T cell phenotype, and the clusters corresponding to 

the malignant SS cell population appeared to contain a phenotype consistent with Tcm.326 An additional cluster 

(Cluster 10) consisted of CD4+ myeloid cells and was excluded from further analysis.  

 

SS cells are clonal and transcriptionally distinct from normal CD4+ T cells

 
Figure 23. Transcriptomic comparison of malignant versus normal CD4+ T cells A. tSNE projects of common markers used to 
diagnose CTCL B. VDJ sequencing of malignant CD4+ T cells examining the distribution of a single prominent clonotype in the 
malignant T cells (orange) C. Log2-fold change expression versus the difference in the percent of cell expressing the gene comparing 
malignant to normal peripheral blood CD4+ T cells (Δ percentage of cells expressed). D. Violin plots of previously identified markers 
of CTCL (adjusted P < 1e-10). E. Potential novel markers of CTCL cells with a Δ percentage of cells expressed greater than 50% and 
adjusted p-values < 1e-100. 
 

In order to investigate the difference in malignant and normal CD4+ T cells, we confirmed the separation of 

normal and malignant cells using previously identified markers (Figure 23A). We verified that sequencing was 

performed on isolated CD4+ T cells, and that the malignant population exhibited a characteristic decrease in 

CD26 (DPP4) and increase in CD70 (Figure 23A). As previously mentioned, the patient’s malignant cells 

expressed an aberrant increase in CD5, which we could demonstrate at the mRNA level (Figure 23A). To 

further demonstrate the observable difference in the malignant SS cells, we filtered the VDJ sequencing results 

for the top TCR hits and matched 94.7% of sequenced cells with the corresponding VDJ sequencing 
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information. Of the 3,328 cells sorted for the SS phenotype (Figure 23B) with recoverable TCR sequencing 

information, 97.3% consisted of a single clonotype containing TRBV14 (CDR3 amino acid sequence: 

CASSPLQGTNSPLHF) and TRAV9-2 (CDR3 amino acid sequence: CALFPNTGFQKLVF) (Figure 23B). 

In contrast, the normal CD4+ T cells had 4007 unique clonotypes with 37 individual cells (0.9%) possessing the 

same malignant TRBV14/TRAV9-2 clonotype (Figure 23B), likely due to the close proximity of the flow 

sorting gates to each other. 

 

In order to investigate potential novel markers or therapeutic targets of SS, we performed differential gene 

analysis comparing the malignant and normal CD4+ T cells. We used this comparison analysis by contrasting 

the log2-fold change (y-axis) and the difference in the percentage of cell expressing the gene (Δ percentage of 

cells expressed, x-axis) (Figure 23C). By examining the difference in the percentage of malignant versus normal 

peripheral blood CD4+ T cells, this allows for the identification of specific markers of SS. As expected, of the 

genes with the highest log2-fold change and greatest discrimination between malignant versus normal cells were 

TRBV14 (log2-fold change = 3.53, Δ percentage = 94%) and TRAV9-2 (log2-fold change = 2.49, Δ percentage 

= 81%) (Figure 23B). Interestingly the majority of malignant SS cells also expressed a second TRBV region 

variant, TRBV21-4 (CDR3 amino acid sequence: CALFPNTGFQKLVF) (Figure 23C). Using this analysis, 

we examined previously identified genes that relied on pooled SS RNA sequencing and found differential 

expression in CCR 344, DUSP1345,346, GPR15347, ICAM2346, JUNB346,348, KIR3DL2349, PLS3350, ITGB1333,345, 

GATA3345,346, NEDD4L332,347, LA 351, MGAT4A351, PDCD1333,351,352, SKAP 334,351, and TOX351,353,354 (Figure 

23D). We also identified novel markers, selecting three genes, HACD1, PCSK1N, and TSPAN2 with log2-fold 

change > 2 and Δ percentage of cells expressed > 50% (Figure 23E).  

 

Heterogeneous transcriptional profiles of single cells in SS 

Unlike previous genomic studies that rely on pooled SS cells in comparison to normal CD4+ controls, we also 

were able to investigate the heterogeneity of the SS cells at a single-cell level (Figure 24A), and our previous 

analysis separated this malignant population into 5 clusters. Using the machine-learning reverse graph 

embedding for dimensional reduction available in the Monocle 2 algorithm, we constructed a manifold using 

the malignant SS cells (Figure 24B). This technique orders the single cells by expression patterns to represent 

distinct cellular fates or biological processes.318 Despite our finding of the clonal expansion of the SS cells 

(Figure 23B), we observed distinct bifurcated architecture of the manifold (Figure 24B). Based on this 

ordering, SS cells appear to start principally from Cluster 9 and moved towards Cluster 11 (solid line) or Clusters 

1,4 and 5 (dotted line) (Figure 24B).  
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Figure 24. Transcriptional heterogeneity in malignant CD4+ T cells. A. tSNE projection of patient malignant CD4 cells (n=3,443). 
B. Trajectory of malignant cells from clusters 1, 4, 5, 9, and 11 using the Monocle 2 algorithm, solid and dotted line represent distinct 
cell trajectories defined by single-cell transcriptomes C. Pseudo-time projections of major immune transcriptional drivers in the 
malignant CD4+ T cells. Significance based on differential testing by cluster identification used to generate pseudo-time and adjusted 
for multiple comparisons. D. Selection of genes by cluster identity for skin-homing, central memory, and regulatory T cell 
phenotypes. Significance based on the pseudo-time generated by the Monocle 2 algorithm and correct for multiple comparisons. 
 

In order to better understand the differential genes driving the ordinal construction of the manifold, we 

examined major immune transcription factors expression across the malignant CD4+ T cells, focusing on 

FOXP3, GATA3, and IKZF2 (Figure 24C). Using the pseudo-time created by the reverse graph ordering, we 

observed a general decrease in FOXP3 in both directions of the bifurcation (Figure 24C). In contrast, both 

GATA3 and IKZF2 (HELIOS) had marked increase expression with the cell fate associated with cluster 11 

(Figure 24C). Utilizing the differential expression analysis based on the pseudo-time construction, we next 

investigated the underlying differences of the malignant clusters by defined immune phenotypes. We separated 

the analysis into markers of skin-homing T cells, central memory T cells, and Tregs (Figure 24D). As expected 

we found consistent expression of skin-homing markers, CCR4, SELPLG (CLA) and ITGB1, while there was 

a lack of expression of CCR10 across all clusters (Figure 24D, upper row). Similarly, the malignant cells 

exhibited an expression pattern similar to Tcm cells, with sustained levels of CD28, CCR7 and SELL (L-

Selectin/CD62L). Interestingly in both skin-homing and central memory T cell markers, Cluster 11 had 

consistent increased expression in both phenotype markers compared to the other SS clusters (Figure 24D). 

An additional analysis of gene markers revealed a distinct FOXP3+ IL7Rlow TIGIT+ population in cluster 9, 
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consistent with Treg or Treg-like cells (Figure 24D, lower row). All clusters had low and inconsistent 

expression of IL2RA (CD25), another marker of Treg cells, however, consistent with previous reports 

demonstrating lack of CD25+ Tregs in SS.337 These data support substantial heterogeneity among the malignant 

SS cell population and infer a changing transcriptional profile within this clonal population. 

 

 
Figure 25. Predictive clinical correlates in CTCL using SS single-cell heterogeneity. A. Representative schematic of the composition 
of SRP114956 and the separation into training and testing sets for prediction of clinical stage. B. A hypothetical classification decision 
tree is constructed to predict the CTCL stage based on RNA-sequencing expression data for each patient in the training set (n=48). 
At each branch in the tree, the patient’s transcripts per million (TPM) for a given gene are compared to a cutoff value. If the patient’s 
TPM are below the cutoff, the algorithm proceeds to the left and vice versa, until a terminal classification node is reached. A series of 
10,000 boosted trees are grown in sequence utilizing information from previous trees, improving upon previous misclassifications. C. 
The independent test patient data set (n=49) is applied to the 10,000 boosted classification trees and predicted disease states are 
compared to original classifications. Overall, the boosted decision trees correctly classify 79.6% of the disease states. D. The 20 most 
important genes in generating the boosted classification trees are quantified and displayed in a ranked variable importance plot. Bar 
color logic is described below. A. Partial dependence plots for the five most important variables represent how different levels of gene 
expression (log TPM) effect the probability of early-disease classification after integrating out the expression of all other genes. Genes 
with high expression predictive of early disease are colored in grey, while high gene expression more predictive of late stage disease 
are colored in orange. F. Trajectory of malignant cells from clusters 1, 4, 5, 9, and 11 using the Monocle 2 algorithm with pseudo-time 
represented by the color gradient. G. Trajectory and genes expression of selected group of the top 20 genes influencing boosted 
decision tree. 
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Application of artificial intelligence-enabled genetic architecture to single cell SS pseudo-time scheme to predict disease stage 

To better determine and validate if the observed heterogeneity had clinical significance, we downloaded raw 

sequencing reads from a cohort of CTCL patients.343 This cohort consisted of 152 CTCL patient samples with 

targeted sequencing in 344 genes and 3 clinical CTCL classifications: early (Stage £ IIA), intermediate/mid 

(Stages IIB and III), and advanced/late (Stage IV, Figure 4A). In order to improve the separation of the 

predictions, we isolated early (n=63) and late (n=34) CTCL patients and utilized 93 genes that were predictive 

of pseudo-time in our single-cell data (Figure 25A). After splitting the cohort into training (n=48) and testing 

(n=49) sets, we constructed a series of boosted classification trees (n=10,000) using the training set (Figure 

25B). We applied the boosted classification trees to the independent testing set and correctly classified 79.6% 

of samples into early versus late stages (Figure 25C). Variable importance was quantified for each gene across 

the boosted classification trees. The single gene with the largest relative influence in classification was FOXP3 

at 10.39% (Figure 25D). Other genes with high relative influence in the classification model include TGFB1 

(5.37%), CD7 (5.09%), PTPN6 (4.79%), and SUZ12 (4.07%). Partial dependence plots for the five most 

influential genes were constructed to illustrate the effect of each important gene’s expression on the probability 

of early disease stage classification while integrating out other variables (Figure 25E). A partial dependence 

plot was constructed for each of the 20 most important genes (data not shown), and the highest expression 

level of each gene was compared to the probability of early disease stage classification. Genes with their highest 

expression predictive of early disease include FOXP3 and PTPN6, while genes with highest expression 

predictive of late stage disease include TGFB1, CD7, and SUZ12. We next examined the distribution of 

expression of selected genes from the top 20 genes based on the pseudo-time projection of the manifold 

(Figure 25F,G). In this analysis, we noticed inconsistent or irregular expression genes across the cell trajectory 

manifold when examining the late-stage-CTCL gene predictors (CD7, Figure 25G). This is possibly a product 

of the single-cell sequencing of a patient with late-stage SS. In contrast, genes that predict early stage CTCL in 

the top 20 predictors based on relative influence had consistent decreases in at least one tail of the trajectory 

manifold (Figure 25G). Larger single-cell datasets from patients at different stages of diseases may therefore 

increase the power of this technique and increase the precision of prognostic and predictive biomarkers. 

 

Discussion 

Beyond examining transcriptional states of clonal SS cells, this study examines the implications of predicting 

CTCL progression based on divergent gene drivers. The boosted classification trees demonstrated an 

efficacious prediction model for classifying early versus late disease stage (Figure 25). As opposed to the binary 

evaluation of differential expression of a gene between two different disease states, the boosted classification 

trees utilizes combinations of continuous expression values associated with early versus late disease.355 

Underscoring the value of the boosted classification tree approach was the nearly 80% prediction efficiency for 

CTCL stage (Figure 25C), particularly intriguing considering that feature selection was performed using data 
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from a single patient. Although limited to a single patient, our analysis provides a framework for the application 

of single-cell-based high throughput technologies to analyze disease in a clinically meaningful way.  

 

In particular, the expression of FOXP3 was the most influential predictor of CTCL stage identified from our 

analysis. FoxP3 is a master transcription factor for regulatory T cells.356,357 The observation of Treg or Treg-

like malignant cells in SS and MF is controversial, with a number conflicting results reported.336–340 Our work 

demonstrated decreasing FOXP3 over purported pseudo-time estimation, and this decrease was associated with 

an increase in the major Th2 immune driver, GATA3 (Figure 24C). Intriguingly, in the absence of adequate 

CD25 expression, bona fide Tregs retain developmental plasticity, allowing the cells to differentiate into helper 

T cells dependent on the microenvironment and cytokine milieu.358 Our data indicate that SS cells may initially 

express high FOXP3 and low CD25 (IL2RA) and retain similar mutability to FoxP3+CD25- Tregs. 

 

The maintenance of FOXP3 expression in Tregs is required to maintain a suppressive phenotype, the loss of 

which is termed Treg fragility.359,360 A previous report in SS found a subset of patients with CD25- FOXP3+ 

tumor cells, similar to our RNA findings (Figure 24), that retain suppressive function.337 Instead of the 

malignant proliferation of regulatory T cells first suggested by Berger, et al, our data suggests the possibility of 

a FOXP3+ intermediate state of SS tumor cells.336 The association with increased TGFB1 expression with later 

stage disease, however, would indicate that loss of FOXP3 does not equate to loss of the ability to elaborate 

immunoregulatory/suppressive factors. Also of interest, HDAC inhibition, which is effective in treating 30% 

of SS, has been shown to drive FOXP3 expression and Treg suppressive function in vivo361 Recent targeted 

single-cell sequencing of SS cells before and after treatment with HDAC inhibition demonstrated reduction in 

T cells of the Tcm transcriptional phenotype.341 Thus, the promotion of an early or intermediate FoxP3+ state 

in CTCL may be a mechanism of action for vorinostat or other histone deacetylase inhibitors362 in disease 

treatment and the prevention of disease progression.  

 

Newer single-cell methods, as used here, allow researchers to characterize and stratify common drivers and 

sources of heterogeneity in clonal tumors. Similar to our approach, two recent reports in CTCL using transcript-

indexed ATAC-seq363 and limited mRNA sequencing of 110 T-cell-related genes341 found heterogeneity in 

malignant SS cells. Beyond the observations of transcriptional heterogeneity, this new level of data provides the 

opportunity for clinically-meaningful advances in SS and to other cancers. Although limited in scope, our 

supervised machine-learning approach to predicting CTCL disease state demonstrates the early stages of 

combining these new highthroughput approaches with predictive algorithms to move beyond simple 

observations. 
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CHAPTER 5 
CONCLUSIONS AND FUTURE DIRECTIONS 

 

Conclusions 

Despite cancer being singularly ominous as a term, inquiries using molecular biology, biochemistry, and animal 

modeling can endeavor to slowly resolve fundamental concepts of cancer. These incremental steps forward can 

lead to improvements in the basic understanding of cancer, as well as translate into meaningful changes in 

patient care. A force multiplier for these investigations is the proper use of large-scale data in both deductive 

and inductive reasoning. Starting from the initial work using microarrays by Charles Perou and Therese Sørlie 

in stratifying breast cancer in the early 2000s20,21through moving beyond the TCGA, the field is currently 

standing at the edge of a fundamentally new ability to quantify tumors. But data without direction is not enough; 

in turn the field is beginning to harness the data to move beyond observational science and into supervised and 

deep machine learning to improve both basic and clinical sciences. The latter is the basis of the precision-

medicine initiative by the NCI to match therapies with underlying molecular/genetic profiling regardless of the 

site of origin of the tumors, known as the NCI-MATCH trial.  

 

Although forming 15% of invasive ductal carcinoma diagnoses, BLBC represents an outsized footprint in terms 

of morbidity and mortality compared to other molecular subtypes.30 Therapeutic interventions for BLBC have 

been the same for the last 20 to 30 years, involving surgery, radiation and cytotoxic chemotherapies. With the 

focus on improving care, we examined protein-level data for over 200 markers and discovered that both MSH2 

and MSH6, DNA mismatch repair proteins, were increased in BLBC and were associated with poor overall 

survival. Although initially investigating DNA mismatch repair as a potential for synthetic lethality in BLBC, 

similar to the recent successes of PARP inhibtors36, we found the removal of Msh2 led to a reduction in tumor 

growth and could be potentiate response to immune checkpoint blockade. Fitting recent studies into Lynch 

Syndrome tumors and anti-PD-1 therapies,153,169 we found the Msh2 KO lead to increases in T effector cell 

infiltration and reduction in the suppressive regulatory T cells. 

 

Regulatory T cells in the tumor microenvironment act to dampen anti-tumor immune response. Current 

therapeutic paradigm for targeting Tregs is the use of anti-CTLA-4 antibodies that are non-specific for tumor-

infiltrating Tregs and lead to a high rate of autoimmune complications. Using single-cell RNA sequencing on 

immune cells from three ccRCC patients, we found distinct transcriptional heterogeneity within tumor-

infiltrating Tregs and a novel marker for a suppressive subset of Tregs, CD177. CD177+ Tregs have increased 

levels of immune checkpoints, CTLA-4 and PD-1, at the protein level, in addition to other immune suppressive 

mediators at the mRNA level. Functional analyses of these CD177+ Tregs demonstrated increased suppressive 

ability and increased tumor growth compared to CD177- Tregs. Using the single-cell sequencing expression 
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profiles, we created a signature and trained a support vector machine using TCGA data, discriminating 

prognostic groupings in 8 cancer types based on whole-tumor RNA sequencing. The ability to detect 

transcriptional heterogeneity using single-cell sequencing in tumor-infiltrating immune cells suggests an 

incomplete picture of the tumor microenvironment. This heterogeneity can also be the key to in identifying 

better targets for immunotherapies against Tregs with smaller side-effect profiles. 

 

Cutaneous T cell lymphoma, comprised most commonly of mycosis fungoides and Sézary syndrome, is a 

proliferation of skin-homing CD4+ T cells.324,325 Using single-cell RNA sequencing of peripheral-blood and 

malignant CD4+ T cells in a patient with Sézary syndrome, we assessed previously reported and novel markers 

of the disease. In addition, VDJ sequencing of the individual T cells confirmed the clonal expansion of the 

Sézary syndrome, with 97.3% of the malignant cells containing the clonotype TRBV14 (CDR3 amino acid 

sequence: CASSPLQGTNSPLHF) and TRAV9-2 (CDR3 amino acid sequence: CALFPNTGFQKLVF)  

Despite this clonal expansion, we found unique transcriptional states of Sézary syndrome, suggesting the 

transcriptional evolution from FOXP3+ regulatory-like T cells into T cells that resemble the central memory 

phenotype. After transcriptional ordering of the Sézary syndrome cells to construct a manifold and pseudo-

time estimates, we used the significant genes that change over pseudo-time to perform a boosted tree 

classification system to estimate cutaneous T cell lymphoma disease state using a secondary cohort of 152 

patients who received targeted sequencing of 344 genes, predicting the state 79.6% of the time.  

 

Future directions 

The goal of this dissertation is to develop translational strategies for prognosis and therapies using large-scale 

data. It serves, at least in a small part, as a proof-of-concept for the use of big data and bioinformatics to frame 

hypotheses in real time. Part of the nature of having a collection of diverse topics that combine to form a 

dissertation is the number of questions left unanswered. But to me, that is the best part and future directions 

by chapter order include: 

 

Chapter 2 

Investigation into the underlying mechanism of the activation of anti-tumor immunity elicited by the knockout 

of mismatch DNA repair. Our preliminary data suggests a tumor-burden independent mechanism by which 

the removal of DNA mismatch repair leads to increases in antigen presentation and IFN-𝛾 

secretion/responsiveness. Teasing apart the type 1 and type 2 interferon contribution from tumor-infiltrating 

immune cells versus tumor cells will be the next vital step to understand the underpinning mechanism. Beyond 

the scope of this project, we have also been screening inhibitors of DNA mismatch repair as a therapeutic 

option for the aggressive BLBC. In addition, we have recently bred Msh2flux/flux mice into the C3Tag mouse 
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model of basal-like breast cancer364 with epithelial compartment-specific expression of Cre, allowing for the 

further investigation of MSH2 as a novel tumor promoter for BLBC in a spontaneous tumor model. 

 

Chapter 3 

The heterogeneity of tumor-infiltrating Tregs provides a starting point for the development of more specific 

immunotherapies for Tregs in the tumor microenvironment. Our initial data suggests that CD177 may be a 

specific marker of suppressive tumor-infiltrating Tregs. To this end, we are in the process of developing 

Cd177flux/flux mice to remove Cd177 in a Treg-specific manner to investigate the modulation of tumor burden 

and the functional role of Cd177 in Tregs. Furthermore, preclinical inquiry into the potential of therapeutically 

targeting CD177 using Cd177flux/flux mice as controls.  

 

Chapter 4 

The development and progression of Sézary syndrome is not well understood and has been thought to be, in 

part, an immune reaction to antigen presentation of Langerhans cells in the skin. Using single-cell RNA 

sequencing of skin lesions and malignant blood cells may offer better insights to the initiation and progression 

Sézary syndrome. Additionally, the sequencing of the dendritic-like Langerhans cells within skin lesions, at the 

potential interface of immune stimulation of malignant Sézary syndrome cells, may offer insights into new 

potential therapies. 
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APPENDIX 
REEVALUATING E-CADHERIN AND b-CATENIN: A PAN-CANCER PROTEOMIC APPROACH 

WITH EMPHASIS IN BREAST CANCER 
 

Rationale 

E-Cadherin is a structural component of adherens junctions, linking the actin cytoskeleton to adjacent cells 

forming epithelial tissues.365 Throughout carcinomas (cancers of epithelial origin), E-Cadherin expression has 

been inversely correlated with tumor stage, pathological stage, and prognosis.366–371 Intuitively, the loss of E-

Cadherin in carcinomas is thought to encourage invasion and metastasis via loss of cell-to-cell interactions.372,373 

The loss of E-Cadherin has been used as a hallmark for epithelial-mesenchymal transition (EMT) genetic 

reprogramming that changes the epithelial characteristics of cancer cells.48 However, recent studies have called 

into question whether cancer cells require the loss of E-Cadherin or EMT to invade and metastasize.11-13 

Moreover, several studies have suggested the clustering of tumor cells via adherens or adherens-like junctions 

may facilitate metastasis.374 

 

Catenins, including a-Catenin, β-Catenin, and p120-Catenin, are intracellular components of the adherens 

junction. Catenins provide structural support as part of the adaptor complex that attaches the actin cytoskeleton 

to E-Cadherin. Additionally, β-Catenin is a transcriptional co-activator in the WNT signaling pathway with 

established roles in embryogenesis, stem cell regulation, carcinogenesis, and EMT.375 E-Cadherin is believed to 

sequester b-Catenin to the plasma membrane at a one-to-one ratio.376,377 With the presence of E-Cadherin, 

structural b-Catenin is prevented from participating in WNT ligand-mediated signaling.378 However, it is 

unknown whether deficiency in E-Cadherin is sufficient to drive b-Catenin activation as the loss of E-Cadherin 

is often accompanied by co-loss of b-Catenin in breast cancer.379–381 

 

Breast cancer is one of the few cancer types for which E-Cadherin and b-Catenin have been investigated for 

diagnostic, prognostic, and mechanistic value with inconsistent and sometimes contrasting conclusions.371,382–

385 Invasive breast cancer is divided into two major subgroups based on histologic and molecular traits, including 

infiltrating ductal carcinoma (IDC) with 70-80% of total incidence and infiltrating lobular carcinoma (ILC) with 

10-15% of total incidence.386 Clear distinction in prognosis based on ILC versus IDC has been disputed, with 

groups finding no difference,387 ILC having better prognosis,388–390 and ILC having worse prognosis.389,391 

Recent investigation by the Cancer Genome Atlas (TCGA) network has demonstrated distinct molecular 

subtypes in ILC that differ in overall and disease-free survival, which may account for a portion of the mixed 

results.392 

 



66 
 

A defining feature of many ILC lesions is the loss of E-Cadherin staining via IHC. This loss of E-Cadherin is 

a result of truncating mutations in the E-Cadherin gene, CDH1, seen in up to 50% of ILC or epigenetic silencing 

of CDH1 in up to 41% of ILC.373,393,394 Concomitant with CDH1 mutations is the loss of 16q, the location of 

CDH1, and is thought to be an early event in the development of ILC.392 In contrast, loss of E-Cadherin in 

IDC has been considered a precursor step to invasion and metastasis, with controversial associations with both 

higher grade and pathological stage.371,384,395,396 Interestingly, IDC lymph node and distant metastases can be 

positive for E-Cadherin staining, suggesting a re-expression of E-Cadherin.371,397 While the literature has 

indicated a poor prognostic association of reduced or loss of E-Cadherin in IDC, a number of reports have 

found no association between E-Cadherin status and tumor stage, lymph node status, presence of metastatic 

lesion, or recurrence-free survival.382–384 In a nuclear-grade controlled breast cancer cohort of 470 specimens, 

the expression of E-Cadherin and Catenins were directly associated with shorter patient survival, casting doubt 

on the commonly believed good prognostic indication of E-Cadherin and Catenins in breast cancer.385  

 

As a central node between cell adhesion and stem-like/mesenchymal signaling, the adherens junction has been 

investigated for both prognosis and mechanistic underpinnings in carcinomas. Here, we reexamined the 

relationship between E-Cadherin and b-Catenin in 19 cancer types, with a focus on their prognostic values 

using computational and immunohistochemical approaches. We found a general agreement of E-Cadherin and 

b-Catenin as good prognosis markers in majority of cancers, with breast cancer and kidney papillary cell 

carcinoma as outliers. 

 

Materials and methods 

TCGA data analysis 

Publicly available replicate-based normalized (RBN) reverse-phase protein array (RPPA) data from the Cancer 

TCGA Pan-Cancer Analysis datasets was downloaded from the MD Anderson TCPA.398 Clinical data matrices 

were downloaded from the UCSC Cancer Browser.399 A total of 5,144 samples contained both RPPA and 

clinical information and were subdivided by cancer type. RBN protein levels of E-Cadherin and β-Catenin were 

compared across the Pan-Cancer datasets using Z-score scaled protein level. Survival analysis was performed 

using R packages: survival (v2.41-3), survMisc (v0.5.4), and survminer (v0.4.0). Graphical display of the hazard 

ratio summary across the Pan-Cancer cohorts utilized –log10(P-value) and Cox proportional hazard ratio with 

size of points based on the –log10(P-value). Survival analysis for CDH1 utilized the optimal-cutoff function 

available through survMisc for the TCGA data, Kaplan-Meier Plotter cohort,400 and the METABRIC patient 

cohort.401 The heatmap for the invasive breast carcinoma (BRCA) cohort of the TCGA dataset was made using 

the heatmap.3 function in R. β-Catenin to E-Cadherin ratio was calculated as a quotient of the two factors with 

mean-centralization of natural-log transformation. 
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Tumor samples 

Formalin-fixed, paraffin-embedded cancer samples from breast cancer excisions were obtained from the 

surgical pathology archives of the University of Iowa Hospitals and Clinics. Samples were derived from two 

cohorts: 1) consecutive cases of excised ER- breast cancer with sufficient tissue to put in TMA and 2) a smaller 

group of consecutive excised ER+ breast cancer. Pathologic data recorded from patient pathology reports 

included the following: tumor size, T stage, lymph node status, and ER/PR/HER2 biomarker status. Survival 

data was available for 30 of the 163 patients. ER and PR (IHC) and HER2 (IHC and/or fluorescence in situ 

hybridization) status had been assessed under the context of patient care.  

 
TMA construction and IHC 

Tissue microarrays (TMA) were constructed using the Manual Tissue Arrayer MTA-1 (Beecher Instruments; 

Sun Prairie, WI) with tumors arrayed in triplicate 1 mm cores. IHC was performed on 4-µm tissue sections on 

a Dako Autostainer Link 48 (Carpinteria, CA) after deparaffinization, rehydration, and heat-induced epitope 

retrieval with Tris/EDTA Target Retrieval Solution (pH 9) on the Dako PT Link. Mouse monoclonal 

antibodies to β-Catenin (clone β-Catenin-1; 1:500; 15-minute primary and secondary antibody incubations; 

Dako) and E-Cadherin (clone NCH-38; 1:50; 15-minute primary and secondary antibody incubations; Dako) 

were used. Specific signal was visualized with the polymer-based Dako EnVision Flex System, with 3’-

diaminobenzidine as the chromogen. Immunostained slides were counterstained with Harris hematoxylin 

(Leica Biosystems; Buffalo Grove, IL) and coverslipped. The positive control tissues for β-Catenin and E-

Cadherin were solid pseudopapillary neoplasm and breast cancer, respectively.  

 

Immunohistochemical scoring 

IHC was scored by two pathologists at a double-headed light microscope. For β-Catenin and E-Cadherin, one 

of the following three patterns was assigned: intact membranous (crisp, complete staining readily observable at 

20-40x magnification), reduced membranous (weaker, incomplete staining), and absent (complete absence of 

cell membrane staining). β-Catenin was additionally assessed for nuclear staining.  
 

Statistical analysis and visualizations 

Hazard ratios and P-values were calculated using the Cox proportional hazard function in R comparing the 

upper versus lower quartile of the indicated proteins. Significance testing for sampling distribution was 

conducted using the 𝜒2 test. Correlations were calculated with the psych R package (v1.7.8) with the Spearman 

rank-based approach, which is more robust for outliers. Analyses and graphical plotting were performed using 

RStudio and the ggplot2 R package (v2.2.1) and the ggridges (v0.4.1) for the density-based histogram plots or 

ridge plots. Graphical summary of the data sources, data analysis, and results is provided in Figure 26. 
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Results  

b-Catenin and E-Cadherin protein correlation and predictive ability across cancers  

With the recent availability of the reverse-phase protein array (RPPA) data for the TCGA samples developed 

by MD Anderson, we examined the protein level of b-Catenin and E-Cadherin in 19 cancer types (Figure 

27A). Across these TCGA cancer cohorts, we found a consistent positive correlation between b-Catenin and 

E-Cadherin protein level, with Spearman r greater than 0.5 in 15 of 19 cancer types. Low correlations between 

b-Catenin and E-Cadherin were observed in adrenocortical carcinomas (ACC, r=-0.321, P=0.0297), 

glioblastoma multiforme (GBM, r=0.199, P=0.00470), kidney clear cell carcinoma (KIRC, r=0.275, P=3.97e-

09), and low-grade glioma (LGG, r=-0.144, P=0.0213). Using the Cox regression analysis, we compared the 

highest versus lowest quartile of samples in each cancer type for b-Catenin and E-Cadherin. b-Catenin exhibited 

a range of hazard ratios, either as a good or as a poor prognostic indicator dependent on the cancer type (Figure 

27B). However, with a significance threshold of P≤0.05, only three cancer types with b-Catenin as a good 

prognostic indicator met the criteria: KIRC (HR=0.688), head and neck squamous cell carcinoma (HNSC, 

HR=0.786) and GBM (HR=0.853). In contrast, high E-Cadherin was correlated with good prognosis in 12 of 

Figure a.1. Graphical 
summary of results and 
workflow of the analysis.  1. 
starting with survival analysis 
of β-catenin and E-cadherin 
across 5,441 samples in the Pan-
Cancer the Cancer Genome 
Atlas (TCGA). Further focus on 
breast invasive cancer (BRCA) 
found increased β-catenin and 
E-cadherin as poor prognostic 
indicators in infiltrating ductal 
carcinoma (IDC), mirroring 
survival analysis of CDH1 in 
6,465 patient samples. This led 
to the further investigation of β-
catenin and E-cadherin staining 
and localization using tissue 
microarrays (2) and further 
characterization of β-catenin 
versus E-cadherin dynamics and 
survival using bioinformatics 3.  
ER, estrogen receptor; HER2, 
human epidermal growth factor 
receptor 2; KM, Kaplan-Meier; 
TNBC, triple-negative breast 
cancer. 
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the 19 cancer types, with two cancer cohorts reaching significance threshold of P≤0.05 (Figure 27C).  Notably 

E-Cadherin was a poor prognosis marker in kidney papillary cell carcinoma (KIRP, HR=1.537, P=0.027) and 

in the breast invasive carcinoma (BRCA, HR=1.127, P=0.2) cohorts of TCGA datasets (Figure 27C). Despite 

being below the significance threshold of P≤0.05, we focused on breast cancer as it is a large cohort of patient 

specimens with a variety of histological and subtypic designations that could be obscuring the prognostic 

prediction of E-Cadherin or b-Catenin.  

 
Figure a.2. Protein level and prognostic value of β-Catenin and E-Cadherin across 19 cancer types. A. Z-score protein level of β-
Catenin (top) and E-Cadherin (bottom) in the TCGA Pan-Can cohort (P<0.001 for β-Catenin and E-Cadherin). B. Summary of Cox 
proportional hazard regression comparing the upper quartile versus lowest quartile of β-Catenin protein level. Dotted line indicates a 
P=0.05. C. Summary of Cox proportional hazard regression comparing the upper quartile versus lowest quartile of E-Cadherin protein 
level. Dotted line indicates a P = 0.05. Size of points is on a relative scale based on –log10(P-value). ACC, adrenocortical carcinoma 
(n=46); BLCA, bladder urothelial carcinoma (n=127); BRCA, breast invasive carcinoma (n=820); COAD, colon adenocarcinoma 
(n=326); GBM, glioblastoma multiforme (n=201); HNSC, head and neck squamous cell carcinoma (n=203); KIRC, kidney clear cell 
carcinoma (n=444), KIPR, kidney papillary cell carcinoma (n=207); LGG, lower grade glioma (n=257); LUAD, lung adenocarcinoma 
(n=233); LUSC, lung squamous cell carcinoma (n=192); OV, ovarian serous cystadenocarcinoma (n=408); PAAD, pancreatic 
adenocarcinoma (n=105); PRAD, prostate adenocarcinoma (n=164); READ, rectum adenocarcinoma (n=127); SKCM, skin 
cutaneous melanoma (n=207); STAD, stomach adenocarcinoma (n=299); THCA, thyroid carcinoma (n=374); UCEC uterine corpus 
endometrial carcinoma (n=404).  
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b-Catenin and E-Cadherin protein in histological subtypes of breast cancer 

Previous literature has reported the loss of E-Cadherin as a diagnostic marker of ILC, together with loss of 

catenins.373,393,394,402 Using unsupervised clustering of b-Catenin, E-Cadherin, and other components involved 

in the maintenance or signaling of the adherens junction, we found the ILC (purple) clustered distinctly 

compared to other histological diagnoses (Figure 28A). The ILC cluster was defined by significant decreases 

in b-Catenin (Figure 28A,B) and E-Cadherin (Figure 28A,C). Conversely, IDC varied in b-Catenin and E-

Cadherin protein levels and were significantly correlated with each other (Spearman r=0.64, P<1e-15 ). In IDC, 

E-Cadherin was inversely correlated with N-Cadherin, a marker of EMT, (r=-0.340, P=1.33e-15) compared to 

ILC (r=0.301, P=0.0108). E-Cadherin-to-N-Cadherin switching has been previously seen as a stage- and grade-

dependent phenomenon in IDC.403 After subsetting the IDC patient samples, Cox regression analysis 

demonstrated b-Catenin (Figure 28D) and E-Cadherin (Figure 28E) proteins as poor prognostic indicators. 

In contrast, neither b-Catenin (Figure 2F, HR=1.126, P=0.67) nor E-Cadherin (Figure 2G, HR=1.149, 

P=0.51) was predictive for prognosis in ILC patients.  
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Figure a.3. The dynamics of β-
Catenin and E-Cadherin in breast 
invasive carcinoma. A. Heatmap of the 
clinical and pathologic features of 
TCGA BRCA cohort (n=873). Samples 
across the BRCA cohort underwent 
unsupervised clustering based on the 
indicated protein levels. B. Density-
based histogram and corresponding 
boxplot of β-Catenin protein level by 
histologic diagnosis. IDC, Infiltrating 
Ductal Carcinoma (n=631); ILC, 
Infiltrating Lobular Carcinoma 
(n=152), Medullary Carcinoma (n=6), 
Mixed Histology (n=23), Other (n=60). 
Adjusted P<0.001. C. Density-based 
histogram and corresponding boxplot 
of E-Cadherin protein level by 
histologic diagnosis. Adjusted P<0.001. 
D, E Kaplan-Meier curve using β-
Catenin (D) and E-Cadherin (E) 
protein level to split IDC  samples into 
quartiles, using Cox proportional 
hazard regression comparing the upper 
quartile versus lowest quartile. F, G 
Kaplan-Meier curve using β-Catenin 
(F) and E-Cadherin (G) protein level to 
split ILC samples into quartiles, using 
Cox proportional hazard regression 
comparing the upper quartile versus 
lowest quartile. *P<0.05,****P<0.0001. 
ER, estrogen receptor; progesterone 
receptor; HER2, human epidermal 
growth factor receptor 2.  
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To further corroborate the finding of E-Cadherin as a poor prognostic indicator in IDC, we queried mRNA-

based datasets. In the TCGA BRCA cohort, we first examined the correlation between CDH1 mRNA and E-

Cadherin and found the Spearman r=0.53 (Figure 29A), indicating a significant positive correlation between 

RNA and protein levels. Similar to the protein survival analysis, CDH1 mRNA expression was a poor prognosis 

indicator across all IDC in the TCGA BRCA cohort (Figure 29B, N=772, HR=1.94). We observed the same 

trend in a second (Figure 29C, N=3,951, HR=1.37, KM Plotter) and a third (Figure 29D, left panel, N=1,500, 

HR=1.32) breast cancer cohort consisting of normalized microarray data.401,404 Similar to the protein data, 

CDH1 mRNA was not predictive of prognosis in ILC patients (Figure 29D, right panel), which may be 

complicated by low mRNA and protein expression in ILC. There was no significant correlation between 

CTNNB1 mRNA and b-Catenin protein (r=0.092, data not shown), discounting the validity of using mRNA 

as a predicative marker for breast cancer. 

 
 

Immunobiological evaluation of b-Catenin and E-Cadherin in IDC 

The poor prognostic indication of E-Cadherin in the IDC samples led us to examine b-Catenin and E-

Cadherin status using IDC patient specimens from the University of Iowa Hospital and Clinics. We 

constructed tissue arrays including 220 specimens with known clinical information. Of the initial cohort, 163  
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Figure a.4. mRNA 
comparisons of CDH1 in breast 
cancer. A. Scatterplot of E-
cadherin and CDH1 across the 
invasive breast carcinoma 
(BRCA) The Cancer Genome 
Atlas cohort. B. Kaplan-Meier 
curve from the BRCA cohort 
using CDH1 levels split by auto-
cutoff for high versus low 
samples, using Cox proportional 
hazard regression. C. Kaplan-
Meier curve from the Kaplan-
Meier Plotter cohort 
using CDH1 levels split by auto-
cutoff for high versus low 
samples, using Cox proportional 
hazard regression. D. Kaplan-
Meier curve from the 
METABRIC cohort 
using CDH1 levels split by auto-
cutoff for high versus low 
samples, using Cox proportional 
hazard regression and separated 
by histologic diagnosis of either 
infiltrating ductal carcinoma 
(IDC; left panel) or infiltrating 
lobular carcinoma (ILC; right 
panel).  
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of 220 cases were further analyzed for IHC staining. This reduction 

from 220 to 163 was due to incomplete clinical information or 

fragment and absent cores in the tissue microarray (Table 2). Samples 

were scored based on the localization of β-Catenin or E-Cadherin and 

the strength of the IHC staining (Figure 30). Of the 163 cases, there 

were four staining patterns for β-Catenin: 47 samples showed 

membranous β-Catenin (Figure 30A), 94 had a reduced pattern 

(Figure 30C), 20 were absent (Figure 30E), and 2 samples displayed 

a component of nuclear β-Catenin staining (Figure 30G). Both 

samples with nuclear staining for β-Catenin had corresponding strong 

membranous E-Cadherin staining (Figure 30H). In contrast, there 

were three patterns of E-Cadherin staining: 81 cases had an intact 

membranous E-Cadherin (Figure 30B), 71 reduced E-Cadherin 

(Figure 30D), and 11 lacked staining (Figure 30F).  

 

b-Catenin and E-Cadherin status in IDC by clinical subtype 

We assessed β-Catenin and E-Cadherin staining patterns according to 

breast cancer biomarker status or clinical subtype, i.e., ER+, ER-

/HER2+ (referred to herein as HER2+), or triple-negative breast 

cancer (TNBC). Of the 163 samples analyzed, 108 samples could be 

assigned as ER+, HER2+, or TNBC (Table 2). The E-Cadherin IHC 

expression patterns showed higher proportions of intact membranous 

E-Cadherin staining in ER+ tumors and a high percentage of reduced 

IHC expression in TNBC (P = 0.0011). Additionally, HER2+ tumors had intact staining pattern of E-cadherin. 

The same significant association was not seen with β-Catenin and biomarker status (P = 0.439). Notably, 

HER2+ samples had the least pronounced correlation between β-Catenin and E-Cadherin, with 78.5% of 

samples with intact membranous E-Cadherin and only 25% of samples with membranous β-Catenin staining 

(Table 3).  

 

 

 

 

Parameter Cohort Total 
Tumor Stage   

Tis (DCIS)* 4 

163 
T1 73 
T2 61 
T3 9 
T4 9 

NA† 7  
Node Stage   
N0 68 

163 
N1 37 
N2 15 
N3 17 
NX 11 
NA† 15  

Biomarker   
ER+ 16 

108 HER2+ 28 
TNBC 64 

Histological Diagnosis  
DCIS 9 

163 

IDC 137 
ILC 7 
Medullary 2 
Metaplastic 1 
Mucinous  3 
Papillary 1 
NA† 3  

Diagnosis Samples  E-Cadherin β-Catenin 
Membranous Reduced Absent Membranous Reduced Absent 

 TNBC             64 24 33 5 18 42 5 
    ER+ 16 10 5 1 6 7 3 
HER2+ 28 22 5 1 7 18 3 
  P=0.011 P=0.439 

* Ductal carcinoma in situ (Tis/DCIS) 
† Information not available (NA) 

Table 2. Summary of β-Catenin and E-
Cadherin IHC tissue microarray. 

Table 3. Summary of IHC staining for E-Cadherin and β-Catenin by subtype. Table based on 108 of the 163 samples 
designated as TNBC, triple-negative, ER+, or HER2+.  
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Figure a.5. IHC staining results for β-Catenin and E-Cadherin in breast cancer samples. Representative IHC staining patterns that 
were observed: A,B. membranous staining for both β-Catenin (top) and E-Cadherin (bottom). C,D. reduced membranous expression 
for both β-Catenin (top) and E-Cadherin (bottom). E,F. absent staining for both β-Catenin (top) and E-Cadherin (bottom). G,H. 
membranous and nuclear staining of β-Catenin with strong E-Cadherin membranous staining (arrows indicate cells with nuclear 
staining of β-Catenin). Images were taken at 400x magnification.  
 
Comparing our IHC results, we used the RPPA data for IDC samples and classified them into clinical subtypes 

based on IHC confirmation of ER+ (n=358), HER+ (n=29) or TNBC (n=63). In order to examine the 

relationship of β-Catenin and E-Cadherin in the context of the adherens junction, we first examined the 

correlation between the two proteins across IDC samples (Figure 31A, r=0.64). Across IDC, 22 samples were 

designated as outliers (Figure 31A, dotted circle) with E-Cadherin protein level < -3 and a β-Catenin > -3. 

There was no significant difference in these samples by biomarker, tumor stage, nodal stage, or survival 

compared to the rest of the IDC cohort. Using the mean-centralized ratio of β-Catenin to E-Cadherin, a method 

of identifying outliers in either β-Catenin or E-Cadherin protein level, we produced density-based histograms 

to examine subgroup-specific differences in the relationship (Figure 31B). Similar to our IHC results, HER2+ 

samples (green) had 8 of 29 samples with β-Catenin-to-E-Cadherin ratio below the identified cut-off, indicating 

a relative decrease in β-Catenin in HER2+ samples. In contrast, ER+ patient samples (blue) had a normal 

distribution of β-Catenin-to-E-Cadherin ratio. TNBC samples (red) had a relative increase in β-Catenin-to-E-

Cadherin ratio that is inconsistent with the IHC results that found a greater reduction in β-Catenin compared 

to E-Cadherin in TNBC (Table 3). However, this higher level of β-Catenin is consistent with literature that 

A

B

C

D

E

F

G

H

β-Catenin

E-Cadherin
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suggests β-Catenin can drive TNBC and is a poor prognostic indicator for TNBC patients.405 We were unable 

to perform survival analysis using the TCGA BRCA cohort due to the limited size and high degree of censored 

samples in the HER2/TNBC subgroups. Alternatively, we used the METABRIC IDC samples, separating the 

samples by IHC-confirmed clinical subtype. Despite the difference in β-Catenin-to-E-Cadherin dynamics, 

CDH1 was a poor prognostic indicator in ER+ and HER2+ IDC (Figure 31C). The highest CDH1 levels in 

TNBC was associated with poor prognosis with a P-value slightly higher than the P<0.05 cut-off (Figure 31C, 

right panel).  

 
 

b-Catenin and E-Cadherin status in IDC by stage 

Using our IHC staining, we next investigated the trend in β-Catenin and E-Cadherin staining patterns by the 

American Joint Committee on Cancer (AJCC) tumor and node stage (Table 4). Both β-Catenin and E-Cadherin 

demonstrated statistically significant negative correlation with tumor stage. In late stage tumors (T2 through 

T4), β-Catenin and E-Cadherin were significantly reduced or absent compared with the T0 and T1 stages. β-

Catenin and E-Cadherin status was less predictive of lymph node involvement (Table 4). However, the 

characteristics between the sample distribution of β-Catenin and E-Cadherin by lymph node status varied. E-

Cadherin had relative equal sample distribution between each node status with reduced E-Cadherin seen in 40-

45.5% of samples in each node stage. Conversely, β-Catenin had bimodal distribution of reduced staining with 

peaks at N0 (62.3%) and N2-3 stages (80%).  
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Figure a.6. β-Catenin and E-
Cadherin protein in IDC 
samples by subtype. A. 
Scatterplot of β-Catenin and E-
Cadherin protein across IDC 
samples. Outliers, defined as E-
Cadherin < -3 and β-Catenin > 
-3 circled with dotted line. B. 
Density histogram of mean-
centralized quotient of β-
Catenin and E-Cadherin. Cut-
off value of -0.65 (low, left-
bound dotted line) and 0.8 
(high, right-bound dotted line) 
were used based on distinct 
subpopulations. c2 tests were 
performed comparing low, 
high, and unaffected population 
distributions. C. Kaplan-Meier 
curve from the ER+ (blue), 
HER2+ (green), and TNBC 
(red) samples in the 
METABRIC cohort using 
CDH1 levels split by auto-
cutoff for high versus low 
samples, using Cox 
proportional hazard regression. 
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Discussion   

Using protein-level data, we performed a large-scale proteomic analysis of 5,144 patient samples across 19 

cancer types for β-Catenin and E-Cadherin. We found a high correlation between the β-Catenin and E-Cadherin 

across most cancers (Figure 27A), suggesting the two proteins likely function at the level of the adherens 

junction. β-Catenin and E-Cadherin were not highly correlated in in neural tumors, which do not express E-

Cadherin in normal tissues, adrenocortical tumors, and renal papillary cell carcinoma. Utilizing this large data 

set, we were then able to ask the question of the prognostic value of β-Catenin and E-Cadherin (Figure 27B,C). 

Several observations countervailed previous IHC reports. For example, despite having a modest correlation 

between β-Catenin and E-Cadherin, KIRC tumors demonstrated good prognostic value for both factors 

(Figure 27B,C). This finding is refuted in the literature, with the absence of E-Cadherin in KIRC being 

reported as a poor prognostic indicator and the reduced-to-negative IHC staining of E-Cadherin can be used 

to differentiate KIRC from renal chromophobe tumors.406,407 

 

Similar to KIRC, E-Cadherin in breast carcinoma has been used as both a differentiating marker and an 

indicator of poor prognosis.373,384,393,395,396 Stratifying the TCGA BRCA cohort by histological diagnosis, we 

found E-Cadherin protein level predicted worse overall survival in IDC, but not in ILC. Likewise, in the TCGA 

BRCA cohort, an amalgamated patient cohort from Kaplan-Meier Plotter,400 and the METABRIC breast cancer 

patient cohort,401 we found the highest levels of RNA for CDH1 was predictive of poor overall or recurrence-

free survival (Figure 29). The poor prognostic indication of CDH1 was also seen after stratifying IDC samples 

into ER+ and HER+ subgroups (Figure 31C). With only survival information available for 30 of the 163 

Target Parameter n Membranous Reduced Absent P-value 
 b-Catenin  Tumor Stage 

T0 
T1 
T2 
T3+T4 

 144  
2 
26 
11 
3 

 
1 
36 
37 
12 

 
1 
5 
7 
3 

P=0.0258 

Nodal Status 
N0 
N1 
N2 
N3 

 133  
21 
11 
3 
4 

 
43 
17 
12 
12 

  
5 
5 
0 
0 

P=0.0834 

E-Cadherin Tumor Stage 
T0 
T1 
T2 
T3+T4 

153  
3 
44 
22 
6 

  
0 
26 
33 
8 

 
0 
3 
3 
5 

P=0.00541 

Nodal Status 
N0 
N1 
N2 
N3 

135  
33 
17 
8 
8 

 
31 
16 
6 
8 

 
4 
2 
1 
1 

P=0.955 

Table 4. Summary of IHC staining for β-Catenin and E-Cadherin by tumor and nodal stage.  
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patients from our IHC cohort, we were unable to address the prognostic implications. However, our IHC 

findings are similar to several studies finding a decrease in E-Cadherin predictive of tumor stage in IDC.382,383  

 

This discordance between immunohistochemical and multi-omic analyses is not uncommon and has been the 

center of several concerted efforts to find greater agreement between the modalities in order to improve patient 

diagnostics and treatment.408,409 Analogously, large-scale meta-analyses of the predictive value of E-Cadherin 

immunohistochemistry have been conducted in a number of cancers.410–415 In general, these meta-analyses 

found loss of E-Cadherin as a poor prognostic indicator for overall and recurrence/progression-free survival, 

with the exception of colorectal cancer.414 The coalescing of IHC-based studies into meta-analysis relies on 

correcting for differing methodologies of the immunohistology and is semi-quantitative. Conversely, RPPA 

quantifies over 200 proteins using validated antibodies via a micro-to-nano scale dot blot system.416 Several 

limitations exist for RPPA in comparison to IHC in tumor pathology, centering on the loss of spatial 

distribution of the epitope and the sampling position effects, similar to RNA quantification.417 In a similar 

avenue to sample positioning, impurity of the sample for tumor cells can have biased effects. Within the TCGA 

cohort, tumor cellular purity for the majority of cohorts range from 75-90%, with notable lower levels (>50%) 

in purity for lung adenocarcinoma (LUAD), stomach adenocarcinoma (STAD) and pancreatic adenocarcinoma 

(PAAD) cohorts.418,419  

 

Immunohistochemical- and RNA-based subtyping of IDC are an established and growing component in patient 

management, respectively. Subtype-specific patterns in β-Catenin and E-Cadherin have previously found for 

E-Cadherin staining, with maintained E-Cadherin in Luminal/ER+ tumors384 and decreased E-Cadherin in 

TNBC.420 This appears to be consistent with the normal mammary duct, with the luminal compartment staining 

positive for E-Cadherin, while the basal compartment has a variable staining pattern for E-Cadherin.44 Beyond 

subtypic trends in E-Cadherin, we found a negative correlation between E-Cadherin and N-Cadherin in IDC 

samples (Figure 28A). Cadherin switching, from E-Cadherin to N-Cadherin, appears to not only mark post-

EMT tumor cells, but leads to N-Cadherin-mediated cellular motility.421,422 No coherent explanation was 

forthcoming for the poor survival at the highest levels of E-Cadherin mRNA or protein across IDC samples 

or across clinical subtypes. 

 

In contrast, β-Catenin signaling has been reported as a poor prognostic marker independent of subtype and 

drives TNBC tumors.405,423–425 Despite the reports of β-Catenin in promoting progression, positive nuclear 

localization via IHC of β-Catenin in IDC and ILC has been consistently uncommon.405,426,427 This trend was 

recapitulated in our IHC cohort with only 2 of 163 patients positive for nuclear β-Catenin, one from the TNBC 

and the ER+ subtypes. The strong protein correlation between β-Catenin and E-Cadherin, as well as the 

discoordination between β-Catenin protein and mRNA, drives us to the conclusion that structural β-Catenin 
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rather than WNT-activated nuclear β-Catenin drives the prognostic value in IDC (Figure 28D). We did notice 

subtype-specific difference of β-Catenin and E-Cadherin ratio (Figure 31B), indicating a more complex 

interaction between the two proteins at structural or signaling levels. For example, we found a relative reduction 

in β-Catenin compared to E-Cadherin in HER2+ samples by IHC (Table 3) and in the RPPA data (Figure 

31B). A recent article from Tung et al. found that monoallelic loss of Ctnnb1, the gene which encodes β-Catenin, 

drives an increase in HER2+ murine tumorigenic capcity.428 Monoallelic loss of Ctnnb1 drove multiplicity in the 

HER2+ mice and appeared to reduce differentiation by histological assessment, with the majority of tumors 

described as poorly-differentiated acini.428 

 

In conclusion, our proteomic analysis revealed both β-Catenin and E-Cadherin are poor prognostic indicators 

in infiltrating ductal carcinoma. Similarly, across the TCGA BRCA dataset and multiple patient cohorts, CDH1 

gene expression was a poor prognosis indicator. This poor prognostic trend of CDH1 was maintained across 

ER+, HER2+, and TNBC samples. The presence of β-Catenin and E-Cadherin in IDC patient samples was 

dependent on clinical subtype and stage, which may be a partial explanation for the difference in patient 

outcomes. Further assessment of E-Cadherin as a predictive marker in breast cancer is warranted, with pointed 

appraisal between emergent proteomic modalities and immunohistochemistry. 
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TRGAted: A WEB TOOL FOR SURVIVAL ANALYSIS USING PROTEIN DATA IN THE CANCER 
GENOME ATLAS 

 
Rationale 

Improving prognostic predictions and the identification of potential therapeutic targets is of particular interest 

to clinicians. Quantification of messenger RNA levels at a genome-wide level has proven valuable in the 

discovery of gene expression profiles, which can serve as biomarkers for clinical outcomes in cancer.429 

However, RNA quantification of tumor or patient cohorts is a proxy for protein level, with many cellular 

processes above transcription that ultimately regulate protein level. The availability of protein-level 

quantification for the TCGA cohorts allow for more relevant clinical outcome predictions compared to mRNA 

levels. Currently available applications provide entry-level analysis in correlational, differential, and survival 

modalities for the RPPA information. However, survival analysis in these applications rely on median- or mean-

based survival data and do not allow for the use of clinical variables.398,430,431  

 

With these limitations in mind, we developed a new open-source web application, TRGAted (Figure 32). Built 

on the R shiny framework, TRGAted is an intuitive data analysis tool for parsing survival information based 

on over 200 proteins in 31 cancer types. TRGAted is comprised of processed RPPA information, survival 

information, and code, allowing users to run instances locally or modify the code with ease.  

 
Figure a.7. Diagram of the implementation of TRGAted. Each file communicates within the R Shiny framework. On the user side 
(left, blue), users select pertinent cancer type, protein of interest, and clinical variables into the CSS-enabled user interface. This 
information is received by the server file enabling the subsequent run in R. On the server side (right, orange), the specific cancer type 
from the database, R packages, and functions are retrieved and executed. After execution, the server file provides both tabular and 
graphical output (purple) to the user interface and is displayed. 
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Materials and Methods 

Protein and survival data 

Level 4 TCGA RPPA data for each cancer type was downloaded from the TCPA Portal developed by the MD 

Anderson Cancer Center.398 Across all proteins, individual values were scaled using Z-scores. A summary of 

information available for each cancer datasets is in Table 5. Additionally, uveal melanoma (UVM) was excluded 

from the datasets due to a low number of samples with RPPA quantification (n=12). Clinical and survival 

information for each cancer data set were downloaded from recently updated TCGA clinical data.432 Of the 

8,167 samples available in the TCPA, overall survival (OS) data was available for 7,714 patients, disease-specific 

survival (DSS) data was available for 7,240 patients, disease-free interval (DFI) data was available for 3,887 

patients, and progression-free interval (PFI) data was available for 7,315 patients (Table 5). Unlike other cancer 

types, metastatic samples were kept in the skin cutaneous melanoma (SKCM) RPPA-based dataset due to the 

highly metastatic nature of the disease. SKCM in the TRGAted application consists of 96 primary tumor 

samples and 258 metastatic samples.  

 

Implementation 

The TRGAted application was written and tested using R (v3.5.1). The interactive plots are made using shiny 

(v1.1.0) and ggplot2 (v3.0.0). Plots can be downloaded as .png, .pdf, or .svg files. Data used to generate the 

individual plots can be downloaded as .csv files. Minimum system requirements for running TRGAted locally 

are modest and include an Intel-compatible CPU and 1 gigabyte of RAM. Running TRGAted from the shiny 

server requires a modern browser and an internet connection. 

 

Kaplan-Meier survival curves can be generated by selecting the cancer type, survival type and protein(s) of 

interest (Figure 33). Kaplan-Meier curves are generated using the survival (v2.41-3) and the survminer (v0.4-

1) R packages. Multi-protein survival analysis utilizes mean values of protein probes, similar to gene-expression-

based survival analysis platforms.404 Hazard ratio for two-group comparisons, either median or optimal cut-off, 

utilize the Cox proportional hazards regression model in the survival R package; with the reported hazard ratio 

comparing high versus low protein groups. Optimal cut-off feature uses the surv_cutpoint function of the 

survminer package, calculating the minimal p-value based on the log-rank method. This function uses the 

maximally selected rank statistic (maxstat, v0.7-25) R package, which finds the maximal standardized two-

sample linear rank statistic.433 In order to find clinically or biologically meaningful biomarkers, the minimal 

proportion cutpoint, or the maximal disparity comparison, was set at 15% versus 85% of samples. Clinical 

variables dependent on the cancer type selected, can be used to filter patients into user-defined groupings. 

Clinical information available across all types include: subtype, tumor stage, histological type, gender, age, and 

response to primary therapy. 
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TRGAted also allows for Cox proportional hazard modeling across all proteins in each cancer type or for a 

single protein across all cancer types. Hazard ratios and P values are based on the Cox regression model. Values 

filtered from the volcano plots are proteins with –log10(p-values) less than 0.1 and hazard ratios greater than 

20. These filters were implemented to improve visualization and to reduce artifacts of the analysis pipeline, 

respectively. The volcano plot can be graphed as linear or natural-log transformed, to assist in the visualization 

of good prognostic indicators. Visualizing the proportional comparison for the volcano plots is also available.  

 

Use Case 

In order to demonstrate the functionality of TRGAted, we present a basic survival analysis of examining the 

aggressive, highly-metastatic subtype of breast cancer, known as basal-like breast cancer. We found in this 

cancer, RAD50, involved in homologous recombination of DNA, as a novel poor prognostic marker. 

Cancer Type Samples OS  DSS  DFI  PFI  Proteins 
Adrenocortical carcinoma (ACC) 46 46 46 28 46 221 
Bladder Urothelial Carcinoma (BLCA) 344 344 330 153 344 223 
Breast invasive carcinoma (BRCA) 901 873 855 750 873 224 
Cervical squamous cell carcinoma and endocervical 
adenocarcinoma (CESC) 171 171 168 112 171 220 
Cholangiocarcinoma (CHOL) 30 30 29 21 30 219 
Colon adenocarcinoma (COAD) 358 325 311 126 325 223 
Diffuse Large B-cell Lymphoma (DLBCL) 33 33 33 19 33 219 
Esophageal carcinoma (ESCA) 126 126 124 76 126 220 
Glioblastoma multiforme (GBM) 205 136 123 0 136 223 
Head and Neck squamous cell carcinoma (HNSC) 346 346 326 85 346 239 
Kidney Chromophobe (KICH) 63 63 63 27 63 220 
Kidney renal clear cell carcinoma (KIRC) 445 444 434 72 444 233 
Kidney renal papillary cell carcinoma (KIRP) 208 207 205 127 207 221 
Lower Grade Glioma (LGG) 427 426 420 114 426 220 
Liver hepatocellular carcinoma (LIHC) 184 184 177 145 184 220 
Lung adenocarcinoma (LUAD) 362 361 327 203 361 239 
Lung squamous cell carcinoma (LUSC) 325 325 295 210 325 239 
Mesothelioma (MESO) 61 61 45 10 61 220 
Ovarian serous cystadenocarcinoma (OV) 411 405 377 199 407 224 
Pancreatic adenocarcinoma (PAAD) 105 105 99 40 105 221 
Pheochromocytoma and Paraganglioma (PCPG) 81 79 79 71 79 220 
Prostate adenocarcinoma (PRAD) 351 351 350 233 351 220 
Rectum adenocarcinoma (READ) 130 126 120 31 126 223 
Sarcoma (SARC) 221 221 215 125 22 220 
Skin Cutaneous Melanoma (SKCM) 354 349 346 0 349 223 
Stomach adenocarcinoma (STAD) 392 357 334 207 357 220 
Testicular Germ Cell Tumors (TGCT) 118 104 104 79 104 219 
Thyroid carcinoma (THCA) 374 372 366 268 372 219 
Thymoma (THYM) 90 90 90 9 90 219 
Uterine Corpus Endometrial Carcinoma (UCEC) 404 404 403 325 404 223 
Uterine Carcinosarcoma (UCS) 48 48 46 22 48 220 

Table 5. Summary of cancer types and survival information available in TRGAted. 
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Figure a.8. Generating survival curves. The interface shows an example of an overall survival curve for the RAD50 protein in the 
basal subtype of breast cancer using the optimal cutpoint A. Disease-specific survival, disease-free interval, and progression-free 
interval can also be selected B. The cutpoint can be varied to separate samples based on protein level into quartiles, tertiles, medians 
or separating into two groups based on the lowest p-value C. 
 

Survival curves: Survival curves can be generated by selecting the cancer type, survival type, and protein or 

proteins of interest (Figure 33A). We also selected the subtype information to more closely examine basal-like 

breast cancer. Other survival types and clinical variables can be selected (Figure 33B). The division of samples 

is available into quartiles, tertiles, median or optimum based on the protein of interest (Figure 33C). Here we 

can see that the DNA repair protein, RAD50 is a poor prognostic marker for overall (Figure 33A) and disease-

specific survival (Figure 33B) in basal-like breast cancer.  

 

Across cancer: TRGAted can be used for biomarker discovery by examining the hazard ratios for all proteins 

available by cancer subtype, like basal-like breast cancer (Figure 34A). The volcano plot displays good 

prognostic markers on the left in blue and poor prognostic markers on the right in red. Having selected the 
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optimal cutoff feature, a bar chart can also be generated to examine the proportion of samples in the high and 

low proportion groups (Figure 34B). Protein labeling is adaptive for both the volcano plot and bar chart and 

will only label significant proteins. Here we see the RAD50 is one of the most significant predictors of poor 

overall survival in basal-like breast cancer (Figure 34A,B).  

 

 
Figure a.9. Visualizing all proteins across a single cancer type. The interface shows an example of the visualization of Cox hazard 
ratio of each protein across the basal subtype of breast cancer A. Good prognostic markers appear on the left in blue, while poor 
prognostic markers are on the right in red. The natural log transformation allows the graph to be centered at 0 and makes the 
visualization of good prognostic markers easier. Labeling for proteins can be adjusted to include more or less protein. Proportional 
comparisons for protein using the optimal cutpoint function is available as well B. 
 

Across protein: TRGAted can also be used to examine the survival outcomes of a protein of interest across 

multiple cancers. Here, RAD50 predicts poor survival in only five cancer types, prostate, adrenocortical, breast 

cancer, low-grade glioma and head and neck cancers (Figure 35A). A summary of the hazard ratios can also be 

visualized by selecting for the barplot function (Figure 35B).  
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Figure a.10. Visualizing a protein across cancer types. A. The interface shows an example of the visualization of Cox hazard ratio of 
for RAD50 across all 31 cancer types. This feature is similar to the Across Cancer tab with the ability to adjust labels and log-
transform the Cox hazard ratios. B. The hazard ratios for significant cancer types can be visualized using a bar chart (B). 
 

Conclusions 

TRGAted is an open-source survival analysis application designed to allow for quick and intuitive exploration 

of TCGA protein-level data. This survival analysis improves on current TCGA pipelines by providing greater 

diversity of clinical and survival options and relying on protein-level data. In addition to log-rank and Cox 

regression modeling, TRGAted allows users to download graphical displays and processed data for up to 7,714 

samples across 31 cancer types. Built on the R Shiny framework, a literate code architecture, the code for 

TRGAted is annotated and easily modified from our GitHub repository. Under the GNU General Public 

License v3.0, we encourage interested groups to modify TRGAted for greater usability. Downloading and 

modifying TRGAted is streamlined by the relatively small size of TRGAted, totally 27.2 megabytes for the 

application, processed data, and built-in instructional guide. 
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